Fast, Minimum Storage Ray/Triangle
Intersection

Tomas Moller Ben Trumbore
Prosolvia Clarus AB Program of Computer Graphics
Chalmers University of Technology Cornell University
E-mail: tompa@clarus.se E-mail: wbt@graphics.cornell.edu

Abstract

We present a clean algorithm for determining whether a ray intersects a
triangle. The algorithm translates the origin of the ray and then changes
the base of that vector which yields a vector (t u v)T, where t is the
distance to the plane in which the triangle lies and (u,v) represents the
coordinates inside the triangle.

One advantage of this method is that the plane equation need not be
computed on the fly nor be stored, which can amount to significant mem-
ory savings for triangle meshes. As we found our method to be compara-
ble in speed to previous methods, we believe it is the fastest ray/triangle
intersection routine for triangles which do not have precomputed plane
equations.

Keywords: ray tracing, intersection, ray/triangle-intersection, base trans-
formation.

1 Introduction
A ray R(t) with origin O and normalized direction D is defined as
R(t)=0+1tD (1)

and a triangle is defined by three vertices Vy, Vi and V5. In the ray/triangle-
intersection problem we want to determine if the ray intersects the triangle.
Previous algorithms have solved this by first computing the intersection between
the ray and the plane in which the triangle lies and then testing if the intersection
point is inside the edges [?].

Our algorithm uses minimal storage (i.e only the vertices of the triangle need
to be stored) and does not need any preprocessing. For triangle meshes, the
memory savings are significant, ranging from about 25% to 50 %, depending on
the amount of vertex sharing.

In our algorithm, a transformation is constructed and applied to the origin
of the ray. The transformation yields a vector containing the distance, ¢, to



the intersection and the coordinates, (u,v), of the intersection. In this way the
ray/plane intersection of previous algorithms is avoided. It should be noted that
this method has been known before, by for example [?] and [?].

2 Intersection Algorithm
A point, T'(u,v), on a triangle is given by
T(u,v) = (1 —u—v)Vy+ulVi +0Vs, (2)

where (u,v) are the barycentric coordinates, which must fulfill u > 0, v > 0
and v + v < 1. Note that (u,v) can be used for texture mapping, normal
interpolation, color interpolation etc. Computing the intersection between the
ray, R(t), and the triangle, T'(u, v), is equivalent to R(t) = T'(u,v), which yields:

O+tD=(1-u—-v)V+uV; +0vVs (3)
Rearranging the terms gives:

t
[-D, i—-Vo, Va=Vo ]| u |=0-V, (4)
v

This means the barycentric coordinates (u,v) and the distance, ¢, from the ray
origin to the intersection point can be found by solving the linear system of
equations above.

The above can be thought of geometrically as translating the triangle to the
origin, and transforming it to a unit triangle in y & z with the ray direction
aligned with z, as illustrated in figure 1 (where M = [-D, Vi —V,, Vo — Vg is
the matrix in equation 4).

o
A \D 0-Vo A Movd
Vo \
translation Va~Vo M /
Vi 7 VRN 1
V1-Vo
Vo
ol Pu

N

Figure 1: Translation and change of base of the ray origin.

Arenberg, in [?], describes a similar algorithm to the one above. He also
constructs a 3 x 3 matrix but uses the normal of the triangle instead of the



ray direction D. This method requires storing the normal for each triangle or
computing them on the fly.

Denoting Ey = Vi — Vp, Ex = Vo — V) and T = O — Vjp, the solution to
equation (4) is obtained by using Cramer’s rule:

t 1 |T7 Ela E2 |
u | =75 | |-D, T, E (5)
v | =D, Ep, Es| |-D, E, T|

;From linear algebra, we know that |A, B, C| = —(AxC)-B = —(CxB)-A.
Equation (5) could therefore be rewritten as

[t]_ 1 [(TXEl)'E2]_ 1 [Q-Ez'l
MR R

where P = (D x E») and Q =T x E;. In our implementation we reuse these
factors to speed up the computations.

3 Implementation

The following C implementation (available online) has been tailored for optimum
performance. There are two branches in the code; one which efficiently culls all
back facing triangles (#ifdef TEST_CULL) and the other which performs the
intersection test on two-sided triangles (#else). All computations are delayed
until it is known that they are required. For example, the value for v is not
computed until the value of u is found to be within the allowable range.

The one-sided intersection routine eliminates all triangles where the value
of the determinant (det) is negative. This allows the routine’s only division
operation to be delayed until an intersection has been confirmed. For shadow
test rays this division is not needed at all, since all we need is whether the
triangle is intersected.

The two-sided intersection routine is forced to perform that division oper-
ation in order to evaluate the values of u and v. Alternatively, this function
could be rewritten to conditionally compare u and v to 0 based on the sign of
det.

Some aspects of this code deserve special attention. The calculation of edge
vectors can be done as a pre-process, with edgel and edge2 being stored in
place of vert1 and vert2. This speedup is only possible when the actual spatial
locations of vertl and vert2 are not needed for other calculations and when
the vertex location data is not shared between triangles.

To ensure numerical stability, the test which eliminates parallel rays must
compare the determinant to a small interval around zero. With a properly
adjusted EPSILON value, this algorithm is extremely stable. If only front facing
triangles are to be tested, the determinant can be compared to EPSILON, rather
than 0 (a negative determinant indicates a back facing triangle).



The value of u is compared to an edge of the triangle (v = 0) and also to a
line parallel to that edge, but passing through the opposite point of the triangle
(u = 1). Though not actually testing an edge of the triangle, this second test
efficiently rules out many intersection points without further calculation.

#define EPSILON 0.000001
#define CROSS(dest,vl,v2) \
dest[0]=vi[1]*v2[2]-vi[2]*v2[1]; \
dest[1]=v1[2]*v2[0]-vi[0]*v2[2]; \
dest[2]=v1[0]*v2[1]-v1i[1]*v2[0];
#define DOT(v1,v2) (vi[0]#v2[0]+vi[1]*v2[1]+v1i[2]*v2[2])
#define SUB(dest,vl,v2)
dest[0]=v1[0]-v2[0]; \
dest[1]=v1[1]-v2[1]; \
dest[2]=v1[2]-v2[2];

int

intersect_triangle(double orig[3], double dir[3],
double vertO[3], double vert1[3], double vert2[3],
double *t, double *u, double *v)

{
double edgel[3], edge2[3], tvec[3], pvec[3], qvec[3];
double det,inv_det;
/* find vectors for two edges sharing vertO */
SUB(edgel, vertl, vert0);
SUB(edge2, vert2, vert0);
/* begin calculating determinant - also used to calculate U parameter */
CROSS(pvec, dir, edge2);
/* if determinant is near zero, ray lies in plane of triangle */
det = DOT(edgel, pvec);
#ifdef TEST_CULL /* define TEST_CULL if culling is desired */
if (det < EPSILON)
return 0;

/* calculate distance from vertO to ray origin */
SUB(tvec, orig, vert0);

/* calculate U parameter and test bounds */
*u = DOT(tvec, pvec);
if (*u < 0.0 || *u > det)

return 0;

/* prepare to test V parameter x/
CROSS(qvec, tvec, edgel);

/* calculate V parameter and test bounds */



xv = DOT(dir, qvec);
if (xv < 0.0 || *u + *v > det)
return O;

/* calculate t, scale parameters, ray intersects triangle */
*t = DOT(edge2, qvec);
inv_det = 1.0 / det;
¥t *= inv_det;
*¥u *= inv_det;
*v *= inv_det;
#else /* the non-culling branch */
if (det > -EPSILON && det < EPSILON)
return 0;
inv_det = 1.0 / det;

/* calculate distance from vertO to ray origin */
SUB(tvec, orig, vert0);

/* calculate U parameter and test bounds */
*u = DOT(tvec, pvec) * inv_det;
if (*u < 0.0 || *u > 1.0)

return 0;

/* prepare to test V parameter */
CROSS(qvec, tvec, edgel);

/* calculate V parameter and test bounds */
xv = DOT(dir, qvec) * inv_det;
if (#v < 0.0 || *u + *v > 1.0)

return 0;

/* calculate t, ray intersects triangle */
*t = DOT(edge2, qvec) * inv_det;

#endif
return 1;

4 Results

In [?], a ray/triangle intersection routine that also computes the barycentric
coordinates was presented. We compared that method to ours. The two non-
culling methods were implemented in an efficient ray tracer. Figure 7?7 presents
ray tracing runtimes from a Hewlett-Packard 9000/735 workstation for the three
models shown in figures 77-??. In this particular implementation, the perfor-
mance of the two methods is roughly comparable (detailed statistics is available
online).



Model Objects | Polygons | Lights | Our method sec. | Badouel sec.
Car 497 83408 1 365 413
Mandala 1281 91743 2 242 244
Fallingwater 4072 182166 15 3143 3184

Figure 2: Contents and runtimes for data sets in figures ??-77.

5 Conclusions

We present an algorithm for ray/triangle intersection which we show to be
comparable in speed to previous methods while significantly reducing memory
storage costs, by avoiding storing triangle plane equations.

6 Acknowledgements

Thanks to Peter Shirley, Eric Lafortune and the anonymous reviewer whose
suggestions greatly improved this paper.

This work was supported by the NSF/ARPA Science and Technology Center
for Computer Graphics and Scientific Visualization (ASC-8920219), and by the
Hewlett-Packard Corporation and by Prosolvia Clarus AB.

References

[Arenberg88] Jeff Arenberg, Re: Ray/Triangle  Intersection  with
Barycentric  Coordinates, in Ray Tracing News, edited
by Eric Haines, Vol. 1, No. 11, November 4, 1988,
http://www.acm.org/tog/resources/RTNews/.

[Badouel90] Didier Badouel, An FEfficient Ray-Polygon Intersection, in
Graphics Gems, edited by Andrew S. Glassner, Academic Press
Inc., 1990, pp. 390-393.

[Haines94] Eric Haines, Point in Polygon Strategies, in Graphics Gems IV,
edited by Paul S. Heckbert, AP Professional, 1994, pp. 24-46.

[Patel96] Edward Patel, personal communication, 1996.

[Shirley96] Peter Shirley, personal communication, 1996.

Web information

Source code, statistical analysis and images are available online at
http://www.acm.org/jgt/papers/Moller Trumbore97/



Figure 4: Mandala

Figure 5: Car (model is courtesy of Nya
Perspektiv Design AB).



