
Fast� Minimum Storage Ray�Triangle

Intersection

Tomas M�oller
Prosolvia Clarus AB

Chalmers University of Technology
E�mail� tompa�clarus�se

Ben Trumbore
Program of Computer Graphics

Cornell University
E�mail� wbt�graphics�cornell�edu

Abstract

We present a clean algorithm for determining whether a ray intersects a
triangle� The algorithm translates the origin of the ray and then changes
the base of that vector which yields a vector �t u v�T � where t is the
distance to the plane in which the triangle lies and �u� v� represents the
coordinates inside the triangle�

One advantage of this method is that the plane equation need not be
computed on the �y nor be stored� which can amount to signi�cant mem�
ory savings for triangle meshes� As we found our method to be compara�
ble in speed to previous methods� we believe it is the fastest ray	triangle
intersection routine for triangles which do not have precomputed plane
equations�

Keywords� ray tracing� intersection� ray	triangle�intersection� base trans�
formation�

� Introduction

A ray R�t� with origin O and normalized direction D is de�ned as

R�t� � O � tD ���

and a triangle is de�ned by three vertices V�� V� and V�� In the ray�triangle	
intersection problem we want to determine if the ray intersects the triangle�
Previous algorithms have solved this by �rst computing the intersection between
the ray and the plane in which the triangle lies and then testing if the intersection
point is inside the edges 
���

Our algorithm uses minimal storage �i�e only the vertices of the triangle need
to be stored� and does not need any preprocessing� For triangle meshes� the
memory savings are signi�cant� ranging from about �
� to 
� �� depending on
the amount of vertex sharing�

In our algorithm� a transformation is constructed and applied to the origin
of the ray� The transformation yields a vector containing the distance� t� to

�



the intersection and the coordinates� �u� v�� of the intersection� In this way the
ray�plane intersection of previous algorithms is avoided� It should be noted that
this method has been known before� by for example 
�� and 
���

� Intersection Algorithm

A point� T �u� v�� on a triangle is given by

T �u� v� � ��� u� v�V� � uV� � vV�� ���

where �u� v� are the barycentric coordinates� which must ful�ll u � �� v � �
and u � v � �� Note that �u� v� can be used for texture mapping� normal
interpolation� color interpolation etc� Computing the intersection between the
ray� R�t�� and the triangle� T �u� v�� is equivalent to R�t� � T �u� v�� which yields�

O � tD � ��� u� v�V� � uV� � vV� ���

Rearranging the terms gives�

�
�D� V� � V�� V� � V�

�
�
�

t

u

v

�
� � O � V� ���

This means the barycentric coordinates �u� v� and the distance� t� from the ray
origin to the intersection point can be found by solving the linear system of
equations above�

The above can be thought of geometrically as translating the triangle to the
origin� and transforming it to a unit triangle in y � z with the ray direction
aligned with x� as illustrated in �gure � �where M � 
�D� V� � V�� V� � V�� is
the matrix in equation ���

M−1

V0

V1

V2

V2−V0

V1−V0

1

1

u

v

O

O−V0

translation

M−1[O−V0]D

Figure �� Translation and change of base of the ray origin�

Arenberg� in 
��� describes a similar algorithm to the one above� He also
constructs a � � � matrix but uses the normal of the triangle instead of the

�



ray direction D� This method requires storing the normal for each triangle or
computing them on the �y�

Denoting E� � V� � V�� E� � V� � V� and T � O � V�� the solution to
equation ��� is obtained by using Cramer�s rule�

�
�

t

u

v

�
� �

�

j �D� E�� E�j

�
�
j T� E�� E� j
j �D� T� E�j
j �D� E�� T j

�
� �
�

�From linear algebra� we know that jA� B� Cj � ��A�C��B � ��C�B��A�
Equation �
� could therefore be rewritten as

�
�

t

u

v

�
� �

�

�D �E�� � E�

�
�

�T �E�� � E�

�D �E�� � T
�T � E�� �D

�
� �

�

P �E�

�
�
Q �E�

P � T
Q �D

�
� � ���

where P � �D � E�� and Q � T � E�� In our implementation we reuse these
factors to speed up the computations�

� Implementation

The following C implementation �available online� has been tailored for optimum
performance� There are two branches in the code� one which e�ciently culls all
back facing triangles ��ifdef TEST CULL� and the other which performs the
intersection test on two	sided triangles ��else�� All computations are delayed
until it is known that they are required� For example� the value for v is not
computed until the value of u is found to be within the allowable range�

The one	sided intersection routine eliminates all triangles where the value
of the determinant �det� is negative� This allows the routine�s only division
operation to be delayed until an intersection has been con�rmed� For shadow
test rays this division is not needed at all� since all we need is whether the
triangle is intersected�

The two	sided intersection routine is forced to perform that division oper	
ation in order to evaluate the values of u and v� Alternatively� this function
could be rewritten to conditionally compare u and v to � based on the sign of
det�

Some aspects of this code deserve special attention� The calculation of edge
vectors can be done as a pre	process� with edge� and edge� being stored in
place of vert� and vert�� This speedup is only possible when the actual spatial
locations of vert� and vert� are not needed for other calculations and when
the vertex location data is not shared between triangles�

To ensure numerical stability� the test which eliminates parallel rays must
compare the determinant to a small interval around zero� With a properly
adjusted EPSILON value� this algorithm is extremely stable� If only front facing
triangles are to be tested� the determinant can be compared to EPSILON� rather
than � �a negative determinant indicates a back facing triangle��

�



The value of u is compared to an edge of the triangle �u � �� and also to a
line parallel to that edge� but passing through the opposite point of the triangle
�u � ��� Though not actually testing an edge of the triangle� this second test
e�ciently rules out many intersection points without further calculation�

�define EPSILON ��������

�define CROSS�dest�v��v�� 	

dest
���v�
��
v�
���v�
��
v�
��� 	

dest
���v�
��
v�
���v�
��
v�
��� 	

dest
���v�
��
v�
���v�
��
v�
���

�define DOT�v��v�� �v�
��
v�
���v�
��
v�
���v�
��
v�
���

�define SUB�dest�v��v��

dest
���v�
���v�
��� 	

dest
���v�
���v�
��� 	

dest
���v�
���v�
���

int

intersect�triangle�double orig
��� double dir
���

double vert�
��� double vert�
��� double vert�
���

double 
t� double 
u� double 
v�

�

double edge�
��� edge�
��� tvec
��� pvec
��� qvec
���

double det�inv�det�

�
 find vectors for two edges sharing vert� 
�

SUB�edge�� vert�� vert���

SUB�edge�� vert�� vert���

�
 begin calculating determinant � also used to calculate U parameter 
�

CROSS�pvec� dir� edge���

�
 if determinant is near zero� ray lies in plane of triangle 
�

det � DOT�edge�� pvec��

�ifdef TEST�CULL �
 define TEST�CULL if culling is desired 
�

if �det � EPSILON�

return ��

�
 calculate distance from vert� to ray origin 
�

SUB�tvec� orig� vert���

�
 calculate U parameter and test bounds 
�


u � DOT�tvec� pvec��

if �
u � ��� �� 
u � det�

return ��

�
 prepare to test V parameter 
�

CROSS�qvec� tvec� edge���

�
 calculate V parameter and test bounds 
�

�




v � DOT�dir� qvec��

if �
v � ��� �� 
u � 
v � det�

return ��

�
 calculate t� scale parameters� ray intersects triangle 
�


t � DOT�edge�� qvec��

inv�det � ��� � det�


t 
� inv�det�


u 
� inv�det�


v 
� inv�det�

�else �
 the non�culling branch 
�

if �det � �EPSILON �� det � EPSILON�

return ��

inv�det � ��� � det�

�
 calculate distance from vert� to ray origin 
�

SUB�tvec� orig� vert���

�
 calculate U parameter and test bounds 
�


u � DOT�tvec� pvec� 
 inv�det�

if �
u � ��� �� 
u � ����

return ��

�
 prepare to test V parameter 
�

CROSS�qvec� tvec� edge���

�
 calculate V parameter and test bounds 
�


v � DOT�dir� qvec� 
 inv�det�

if �
v � ��� �� 
u � 
v � ����

return ��

�
 calculate t� ray intersects triangle 
�


t � DOT�edge�� qvec� 
 inv�det�

�endif

return ��

�

� Results

In 
��� a ray�triangle intersection routine that also computes the barycentric
coordinates was presented� We compared that method to ours� The two non	
culling methods were implemented in an e�cient ray tracer� Figure �� presents
ray tracing runtimes from a Hewlett	Packard �������
 workstation for the three
models shown in �gures ��	��� In this particular implementation� the perfor	
mance of the two methods is roughly comparable �detailed statistics is available
online��






Model Objects Polygons Lights Our method sec� Badouel sec�

Car 
�� 
�
�
 � ��� 
��

Mandala ��
� ���
� � �
� �



Fallingwater 
��� �
���� �� ��
� ��



Figure �� Contents and runtimes for data sets in �gures ��	���

� Conclusions

We present an algorithm for ray�triangle intersection which we show to be
comparable in speed to previous methods while signi�cantly reducing memory
storage costs� by avoiding storing triangle plane equations�

� Acknowledgements

Thanks to Peter Shirley� Eric Lafortune and the anonymous reviewer whose
suggestions greatly improved this paper�

This work was supported by the NSF�ARPA Science and Technology Center
for Computer Graphics and Scienti�c Visualization �ASC	��������� and by the
Hewlett	Packard Corporation and by Prosolvia Clarus AB�

References


Arenberg��� Je� Arenberg� Re� Ray�Triangle Intersection with
Barycentric Coordinates� in Ray Tracing News� edited
by Eric Haines� Vol� �� No� ��� November �� �����
http���www�acm�org�tog�resources�RTNews��


Badouel��� Didier Badouel� An E�cient Ray�Polygon Intersection� in
Graphics Gems� edited by Andrew S� Glassner� Academic Press
Inc�� ����� pp� ���	����


Haines��� Eric Haines� Point in Polygon Strategies� in Graphics Gems IV�
edited by Paul S� Heckbert� AP Professional� ����� pp� ��	���


Patel��� Edward Patel� personal communication� �����


Shirley��� Peter Shirley� personal communication� �����

Web information

Source code� statistical analysis and images are available online at
http���www�acm�org�jgt�papers�MollerTrumbore���

�



Figure �� Falling Water

Figure �� Mandala

Figure 
� Car �model is courtesy of Nya
Perspektiv Design AB��

�


