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Course plan

 Introduction
 Segment-Segment intersections
 Polygon Triangulation
 Delaunay Triangulations
 Geometric Search
 Voronoï Diagrams
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Polygon Triangulation

 Applications
 Graphical display of polygons

 Graphic cards in computers know how to display line 
segments and triangular patches, and points.

 Every complex entity must be decomposed into triangles 
or lines, and displayed as such. It is the case of 
polygonal patches

 This decomposition is made by the graphic card (using 
the GPU) or by the host computer (in the graphic driver), 
even if the user believes that the software interface 
allows to display polygons in a native way.

 This is in fact the case for the visualization code used in 
this course...
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 Another application
 “Art gallery” Problem

 Be able to supervise a complete floor in an art gallery 
using an adequate (minimal) number of video cameras 
placed in appropriate locations
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Polygon Triangulation

 Link between the art gallery problem and the 
triangulation of a polygon P

 Ex. Convex Polygon : may be supervised with only one 
camera

 What is the number of cameras needed to supervise an 
n-sided polygon

 We do not look for the smallest number ! (hard problem – NP 
complete)

 The answer is not trivial : an n-sided polygon may have a very 
complex shape.

 We’ll try to decompose P into triangles, which are easy to 
supervise individually, since triangles are necessarily convex.
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Polygon Triangulation

 We’ll transform the shape into triangles by linking 
non adjacent vertices on the contour.
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Polygon Triangulation

 Does such a triangulation exist for an n-sided 
polygon : proof by induction.

For n=3, it is trivial. Let n > 3 and let us state that the 
triangulation exists for all m < n. We will show that a 
diagonal slicing the polygon exists. Let b the leftmost 
vertex, and a and c the two adjacent vertices to b ; If  ac is 
completely inside the polygon, then we have found a 
diagonal.
a

b

c

The polygon may be 
decomposed in two : one 
triangle with p=3 vertices and 
another polygon with q < n 
vertices, with p+q=n+2.
(in our case, q=n-1)
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If the segment ac is not entirely contained inside, then let us 
consider the vertices located inside the triangle abc.

Among these, let w be the furthest away from ac.

Then, bw is a diagonal. (If it is not be the case -bw intersects 
some of the sides of the polygon- then it means that w was 
not the point furthest away from ac, which is contradictory.)

a

b

c

w

In this case, the polygon is cut in 
two, one with p vertices, the other 
with q vertices, with p < n , q < n 
and p+q=n+2.

 In both cases, the slicing may be 
repeated until only triangles 
remain.
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 How many triangles ?

 For a convex polygon, it is easy: m=n – 2 triangles. Let’s 
suppose this true for any polygon, in particular for polygons 
having p,q < n vertices.

By taking a diagonal to splice the polygon in two,as in the 
steps before, one gets p+q=n+2, with p < n, and q < n.

Each sub-polygon is decomposed into m
p
=p – 2 and m

q
=q – 2.

Therefore, the initial polygon is decomposed into  
m = m

p
+m

q
= p – 2 + q – 2 = n + 2 – 4 = n – 2  triangles. QED
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Polygon Triangulation

 Let’s go back to the initial problem

n – 2  cameras n – 3  cameras

1 camera per triangle 1 camera per edge
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Polygon Triangulation

 Let’s go back to the initial problem

~ n/2  caméras

1 camera per pair of triangles

~ n/3  caméras ?

1 camera for some vertices
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 How to determine the sites for cameras ? → 3-
coloring

 Each edge must link to two 
distinct colors

 Cameras will be located on 
vertices of a give color (e.g. grey)

 The 3-coloring depends on the 
triangulation (if it is unique, it is 
only for a given triangulation)

 Does such a coloring always exist 
?
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Polygon Triangulation

 Existence of the 3-coloring.
 Lets consider the connectivity graph of 

the triangles (dual graph of the 
triangulation T)

 It is obvious that it is a tree, because if 
one takes a diagonal out of T, then the 
graph becomes disjoint because we cut 
the triangulation into two.



  

13

CAD & Computational Geometry

Polygon Triangulation

 Existence of the 3-coloring.
 One can walk along the tree from any 

vertex k. At each new vertex, l for 
instance , one knows the both triangles t(k) 
and t(l) share an edge, and that edge is 
already colored. Only one color choice for 
the remaining vertex of t(l).

 Every time on jumps from triangles to 
triangle in the graph, one uses one of the 
remaining edges of the tree T ; therefore 
the choice of the color for the next vertex is 
always possible.

 The coloring is done in O(n) operations.

kl

?
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 Note :
 The 3-coloring works only if the graph is a tree.
 Otherwise, it is easy to find a counterexample : cyclic graph 

because of an internal vertex

A 4th color is at least needed

k

?l

l'
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Polygon Triangulation

 Cycles coming from holes in the polygon

 Solution : Change the patch into a simple polygon by 
doubling some vertices

?
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Polygon Triangulation

 Solution : Change the patch into a simple polygon by 
doubling some vertices
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Polygon Triangulation

 In fact, the 4-coloring always exists for a planar 
graph (hence for a triangulation in the plane)

The conjecture has been proposed in 1852 by a british 
botanist, who found that coloring the counties of England 
needed only 4 colors.

 Proof only in 1977 using... computers. 
Appel, K. and Haken, W. “The Solution of the Four-Color Map 
Problem” Scientific American 237, 108-121, 1977.

Appel, K. and Haken, W. “Every Planar Map is Four Colorable”, 
Contemporary Mathematics 98, Amer. Math. Soc., 1989
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Polygon Triangulation

 Because of the 3-coloring, the number of cameras 
is the integer part of n/3, in the worst case.

It is often possible to use less cameras ( e.g. for a 
convex polygon,1 is enough), however there are 
polygons for which the figure above is a minimum.

Exactly n/3 teeth, exactly n/3 cameras.
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Polygon Triangulation

 Back to our problem...

We need a triangulation
 Algorithm 1, «Ear clipping»

An « ear » is a sequence a, b ,c  of 
consecutive vertices forming a triangle 
entirely in the polygon, which does not 
contain other vertices.

 The principle is to withdraw such ears 
as they appear ...

Does a polygon always have ears ? - 
YES ! - it even always have two ears : cf
Meisters, G. H., "Polygons have ears." 
American Mathematical Monthly 82 (1975). 648-651

a

b

a"

b"

c"

c

a'

b'

c'
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Two « ears »
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Polygon Triangulation

Algorithm 1, « Ear clipping ».
 A naïve implementation leads to a O(n³) complexity

Find an ear – O(n²)  

Eliminate it – O(1) 

Find a new ear – O((n –i)²) 

 It is possible to do better : in O(n²)
Arrange the vertices in 4 lists :

- one for every vertex (circular list) – O(n) 
- one contains the reflex vertices (concave) – O(n)
- one containes the convex vertices – O(n)
- one contains all the ears – O(n²)

Take the 1st ear; eliminate it  – O(1)

Check for neighboring vertices in the lists:  
- If it was a convex vertex, it remains so
- If if was an ear, it remains so
- If it was a reflex vertiex, it may change to be convex, or an ear
On needs therefor test if it becomes a new ear – in O(n – i)

Update all lists  – O(1)

Repeat n–2 times

n–2
times
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e,c
e,c

r

e = ear
r = reflex
c = convex

r

r

e,c

e,c

r

r
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 Is it possible to do better than O(n²) ?

Convex polygon : O(n) Monotonous polygon
with respect to an orientation d : O(n)
(formal demonstration later)

d

Intersection in 
one piece
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Polygon Triangulation

 Second algorithm, use of a decomposition into 
simpler polygons

Idea : decompose in sub-polygons that have a simpler 
shape so that the triangulation is deemed more simple. 
However : decomposition into convex polygons as 
difficult as the triangulation itself – remains monotone 
polygons

Algorithm 2 has therefore two parts :
– Decomposition into monotone sub-polygons (we hope in  
o(n²) , e.g. O(nlogn) )

– Triangulation of the sub-polygons
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Polygon Triangulation

 Decomposition along x

Some special vertices do exist. These make the
polygon non monotone 

 These are the vertices for which
there is a change of the 
apparent orientation (with respect
to the reference line) when
one follows the exterior of the polygon.

 It is from these vertices that we will add
diagonals to achieve the decomposition

s

?
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Polygon Triangulation

 Classification of vertices
« regular » vertex

« start » vertex

« end » vertex

« separating » vertex

« fuse » vertex
 The « start » vertex has 

two neighbors to the right
and an interior angle below p.

 If the angle is above p the vertex is « separating »
 The « end » vertex has two neighbors to the left, and an interior 

angle below p.
 If the angle is above p the vertex is « fuse »

 In all other cases, the vertex is « regular »

x+
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Polygon Triangulation

 It is clear that a monotone polygon does not contain any « fuse » 
or « separating » vertices

 Same as to prove that a non monotone polygon contains at least one 
« fuse » or « separating » vertex.

 Non x-monotone → a vertical line l intersects P in more than one 
connected component. Choose l such that the lowest intersection is a 
segment  – but not a single vertex.

l

P

q

p

r

Separating
vertex

 Let p be the point under the boundary, and q the point 
above it.

 Lets start from q and go along the boundary so that the 
inside of the polygon is at the left of the boundary.

 At some point, l is intersected again, at point r.
 If r ≠ p , then we fond an extremal vertex that is a 

separating vertex.
 If r = p, lets walk the other way round.
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 If r = p, lets walk the other way round.. Like before, one 
intersects l at a new point  r' . Necessarily, r' ≠ p , otherwise it 
would mean that the intersection of l with P has only one 
connected segment.

 Thus, there exists one vertex to the right, which is necessarily 
a fuse vertex.

 Therefore, any non x-monotone polygon has at least one 
separating vertex and/or one fuse vertex.

l

P

q

p=r

r'
Fuse vertex



  

29

CAD & Computational Geometry

Polygon Triangulation
 That means if one eliminates all separating and fuse vertices 

(i.e. transform them into other types of vertices), the original 
polygon would have been decomposed into monotone 
polygons.

 It is done by adding diagonals : one to the left for each 
separating vertex, one to the right for each fuse vertex.

 The difficulty lies in linking these diagonals to other vertices of 
the polygon.
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Polygon Triangulation

 Use of the planar sweeping (again!)
 Events are vertices of the original polygon (no new 

events are created)
 Those are sorted in lexicographic order, in a priority 

queue.
 The status T allows to build diagonals as the line sweeps 

to the right
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 What to do when l meets an event ?
 Case of « separating » vertices

 One should link it to a close vertex so that we
do not intersect other edges.

Let a
j
 be the edge immediately below s

i
 

along l, and a
k
 that immediately above.

Then it is always possible to connect s
i
 

to the rightmost vertex between a
j
 and a

k

, and to the left of s
i
. If it does not exist,

simply use the leftmost vertex of a
j
 (or a

k
).

In every case, this vertex is marked 
as corresponding to a

j 
 :  corr(a

j
).

l

s
i

s
i+1

s
i–1 

a
i

a
i–1 

si  in a counter-clowise order
ai= si si+1

an−1=sn−1 s0

corr(a
j
)

a
j 

a
k 
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 What to do when l meets an event ?
 Case of « Fuse » vertices

 They must be linked to close vertices so that
we do not cross edges – BUT it cannot
be done immediately (the potential vertex
being on the right of  l )

 One can notice that s
i
 can be marked

as corresponding to de a
j
 at this point.

l

s
i
=corr(a

j
)

a
j 

a
k 
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 What to do when l meets an event ?
 Case of « Fuse » vertices

 When l moves further, it meets s
m
 

which becomes the new corresponding vertex
of a

j
 .

 It is a this point that one can link 
s

m
 with s

i
 by a diagonal.

 This is done only if s
i
 is a fuse vertex !

 It is possible that s
m
 is a separating vertex

it is good - one diagonal for two.

l

s
i
=ex - corr(a

j
)

s
m 

a
j 

a
k 
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Polygon Triangulation
 Status to be updated at each event

 Binary search tree T – contains the edges for which the interior of the 
polygon is “above”.

 The ordering in this tree is based on the vertical position : lower edges are 
found before upper edges.

 For each edge, the vertex to which it “corresponds” is stored

 For every event s
i
 , the status is updated :

 si is a « start » event : insert edge a
i
 in T, update corr(a

i
)=s

i 
.

 si is an « end » event : if corr(a
i-1

) is a « fuse » vertex then create a 
diagonal between si and corr(a

i-1
) . Erase a

i-1
 from T.

 si is a «separating » vertex
Search for the edge a

j
 located below s

i
 in T 

Create a diagonal between s
i
 and corr(a

j
)

Update corr(a
j
)=s

i

Inserte a
i
 into T and set corr(a

i
)=s

i 
.
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 s

i
 is a « fuse » vertex

if corr(a
i-1

) is a fuse vertex
  create the diagonal between s

i
 and corr(a

i-1
)

Delete a
i-1

 from T
Search the edge a

j
 directly below s

i
 in T 

If corr(a
j
) is a fuse vertex

  create a diagonal between s
i
 and corr(a

j
)

Update corr(a
j
)=s

i
.

 s
i
 is a « regular » vertex

  If the interior of P is above s
i

    If corr(a
i-1

) is a fusion vertex
       create a diagonal between s

i
 and corr(a

i-1
)

    delete a
i-1

 from T
    Insert a

i
 into T and update corr(a

i
)=s

i

  Else search in T which a
j
 is below s

i

    If corr(a
j
) is a « fuse » vertex

      create a diagonal between s
i
 and corr(a

j
)

    Update corr(a
j
) = s

i
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 Performances :
 Building the event queue : O(nlogn)
 Every event takes at most O(logn), and there are 

exactly n events. 
 All in all, O(nlogn)
 Storage : O(n)
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 Triangulation of monotone polygons : again by planar 
sweeping

 Use a stack S, in a lexicographic order
 Contains the vertices that have been already met but should be 

bound to other vertices – takes the shape of a “cone”.
 Two cases : 

 The next vertex is on the same side of the 1st vertex on the stack
 Or not ... s

2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

Stack S
s

3

s
4

s
5

s
10
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 If the next vertex is on the same side as the first on stack
 One can try to link successively the vertices on the top of the 

stack to the current vertex.
 At one point, we must stop (a diagonal cuts the polygon)

s
2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

Stack S
s

3

s
4

s
5

s
10
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s
2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

s
5

s
10

  

Stack S

 If the next vertex is on the same side as the first on stack
 One can try to link successively the vertices on the top of the 

stack to the current vertex.
 At one point, we must stop (a diagonal cuts the polygon)
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s
2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

s
5

s
10

  

Stack S

 If the next vertex is on the same side as the first on stack
 One can try to link successively the vertices on the top of the 

stack to the current vertex.
 At one point, we must stip (a diagonal cuts the polygon)
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 If the next vertex is on the same side as the first on stack
 One can try to link successively the vertices on the top of the 

stack to the current vertex.
 At one point, we must stip (a diagonal cuts the polygon)

 At the end, one must push the first and last vertex linked back 
onto the stack

s
2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

s
2

s
4

s
5

s
10

  

Stack S
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 If the next vertex is on the same side as the first on stack
 One can try to link successively the vertices on the top of the 

stack to the current vertex.
 Sometimes, merely push the current vertex on the stack ...

s
2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

s
1

s
2

s
4

s
5

s
10

  

s
1

Stack S
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 If the next vertex is NOT on the same side as the first on 
stack

s
1

s
2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

s
11

s
1

s
2

s
4

s
5

s
10

  

Stack S
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 If the next vertex is NOT on the same side as the first on 
stack

 One can successively link all vertices from the stack but the last 
one to the current vertex

s
1

s
2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

s
11

s
1

s
2

s
4

s
5

s
10

  

Stack S
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s
1

s
2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

s
11

s
2

s
4

s
5

s
10

  

Stack S

 If the next vertex is NOT on the same side as the first on 
stack

 One can successively link all vertices from the stack but the last 
one to the current vertex
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s
1

s
2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

s
11

s
4

s
5

s
10

  

Stack S

 If the next vertex is NOT on the same side as the first on 
stack

 One can successively link all vertices from the stack but the last 
one to the current vertex
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 If the next vertex is NOT on the same side as the first on 
stack

 One can successively link all vertices from the stack but the last 
one to the current vertex

 At the end, the ex-first vertex is pushed on the stack again
 One then processes the next vertex, here s

12

s
1

s
2

s
3

s
4s

5

s
6

s
7

s
8

s
9

s
10

s
11

s
11

s
1

  

s
12

s
n

Stack S
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TriangulateMonotonePolygon(MP)
Input : an x-montone polygon MP 
Output : a triangulation of MP 
{
  Fuse the vertices of the superior and inferior chain into a common structure. The vertices are classified in a 
lexicographic order, t

0
 is the first (leftmost) and, t

n-1
 the last one.

  Initialize an empty stack S , and push t
0
 and t

1

  For  j from 2 to n-2
  {
    If t

j
 and the 1st vertex on the stack are on different chains

    {
      Pop all the vertices from the stack, create a diagonal between those and the current vertex t

j
, 

        except the last on the stack.
      Push t

j-1
 and t

j
 on the stack

    }
    Else
    {
       Pop one vertex from the stack S ;
       Pop the other vertices one by one as far as one can make a diagonal (not crossings)
       Push back the last pop-ed vertex, and t

j

    }
  }
  Create diagonals between t

n-1
 and all the remaining vertices in the stack, except the first and last.

}
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 Complexity of the algorithm
 Ordering of vertices is in O(n) because the polygon is 

monotone !
 The loop is done n-3 times

 In the worst case,  2n-4 vertices are “pushed” on the stack
 The number of “popped” vertices cannot exceed this value 2n-4
 Each individual operation is in constant time O(1)

 The complexity is therefore O(n)
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 Complexity of the complete triangulation algorithm
 Decomposition in monotone polygons : O(nlogn)
 It generates k monotone polygons, each van be 

triangulated in O(n
i
). Of course, Sn

i
=O(n)

 Therefore the whole thing is in O(n)

 As a consequence, the total complexity is 
dominated by the decomposition into monotone 
polygons : O(nlogn) 
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 Some remarks
 It is not an optimal algorithm for simple polygons 

(without holes)
 There exist more involved alternatives in O(n)

 B. Chazelle. Triangulating a simple polygon in linear time. In 
Proceedings of the 31st Annual Symposium on Foundations of 
Computer Science, IEEE, 1990, pages 220-230.

 But it is more general because it works with holes. In this 
case, it is actually optimal, since the theoretical limit is 
precisely W(nlogn) .
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 In 3D : “tetrahedralization” of an n-sided polytope
 Much, much more difficult !
 Sometimes impossible without adding internal 

vertices (called Steiner points)
 Knowing if one needs Steiner points : NP – hard.

J Ruppert, R Seidel, On the difficulty of triangulating three-
dimensional nonconvex polyhedra, Discrete & Computational 
Geometry, 1992, Springer.

 The number of steiner points is bound by Q(n+r²) , r is 
the numbler of reflex edges (for a non convex polytope)

 The number of tetrahedrons is not linear with the number 
of vertices on the boundary of the polytope...
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n vertices

n vertices

Totally, there are 2n vertices and (n–1)² tetrahedrons

 Simple polyhedron that does not yield a 
triangulation in O(n) tetrahedrons...
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 Example of simple polyhedron that is not tessellable 
without Steiner points…

     Schönhardt’s polyhedron
E. Schönhardt. Über die Zerlegung von Dreieckspolyedern in 
Tetraeder. Math. Ann., 98:309-312,1928.

        

Reflex faces/edges


