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CAD & Computational Geometry

Course plan

 Introduction
 Segment-Segment intersections
 Polygon Triangulation
 Intro to Voronoï Diagrams & Delaunay Triangulations
 Geometric Search
 Sweeping algorithm for Voronoï Diagrams
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Delaunay Triangulation

 Delaunay triangulation algorithms

Two alternatives 

1- Generate a triangulation for a given set of points, known 
in advance

 Using Fortune’s algorithm (for Voronoï diagrams) and “dualization” 
 Ad-hoc algorithms, not necessarily incremental

2- Points are generated “in line”, at the same time the 
triangulation is updated

 Mesh generation / mesh adaptation
 Algorithms must be incremental
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Delaunay Triangulation

 Principles behind incremental algorithms for Delaunay 
triangulations

 Insertion of a point p
n
 in a triangulation of n–1 points

- Find the entity “containing” the new point

- Insert (topologically) the point in the triangulation

- Modify the triangulation in order to keep the “Delaunay” 
characteristic

There exist two close algorithms (equivalent since the Delaunay triangulation is 
unique)

 Lawson – edge swapping
a valid  (and better) triangulation is guaranteed at each step.

 Bowyer-Watson – Find every triangle that violate the empty sphere criterion, 
delete them and build a new cavity. Mesh the cavity (star-shaped cavity), i.e. link 
every boundary edge with the new point.
Drawback: it is possible to build non star-shaped cavities (even unconnected) if 
predicates are evaluated in finite numerical precision.
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Delaunay Triangulation

 Where is the entity containing the new point ? Geometric 
search in general – see next course, sometimes we know 
already where to insert the new point

 Insertion of the point in the existing triangulation.

Case 1 : the point p
n
 is located in a triangle T

i
 

- The red edges are legal by construction.

T
i

P
n

T
i1

T
i2

T
i3
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Delaunay Triangulation

 Insertion of the point in the existing triangulation.

Case 2 : the p
n
 is located on an edge a

k
 

- The new edges in red are also legal by construction.

- What about the other triangles / edges  (the green ones in 
particular) ?

a
k

P
n

a
k1

a
k2

T
i

T
j

T
j2

T
j1

T
i2

T
i1
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Delaunay Triangulation

 Modify the triangulation so that the “Delaunay” characteristic 
is kept.

 It amounts to legalize every edge that became illegal following the 
insertion of the new vertex int the triangulation

 What are these edges ?
 These are the ones that have new neighboring triangles following the insertion. 

(here in green)
 All the other edges (black) are still legal for the time being, because nothing 

changed in their neighborhood..
 We should therefore check if these

green edges are still legal, and
perform edge swapping if this is not
the case.

 When an edge-swap happens, one
must check the neighboring triangles
in order to make sure all edges are
still legal. If not, swap the next
layer of illegal edges, until no new illegal
edge is found
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Delaunay Triangulation
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Delaunay Triangulation
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Delaunay Triangulation

 Global algorithm

InsertPoint(p
r
,T)

Input : a point p
r
 to be inserted, and a Delaunay triangulation

Output : A Delaunay triangulation containing p
r
.

{
  Find the triangle T

i
 (p

i
, p

j
, p

k
) containing p

r

  If p
r
 is inside T

i

  {
    Cut T

i
 in 3 and add the edges linking p

r
 and p

i
,p

j
 and p

k

    LegalizeEdge(p
r
, p

i 
p

j
, T)

    LegalizeEdge(p
r
, p

j 
p

k
, T)

    LegalizeEdge(p
r
, p

k
p

i
, T)

  }
  Else (p

r
 is on an edge , e.g. p

i 
p

j
 , p

k
 and p

l
 are the opposite points to p

i 
p

j
)

  {
    Cut both triangles neighbors to p

i 
p

j
 in 4 and insert the edges linking p

r
 and p

i
, p

j
, p

k
, p

l
.

    LegalizeEdge(p
r
, p

i 
p

l
, T) ;     LegalizeEdge(p

r
, p

l 
p

j
, T) ; 

    LegalizeEdge(p
r
, p

j 
p

k
, T) ;    LegalizeEdge(p

r
, p

k 
p

i
, T) ; 

  }
}
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Delaunay Triangulation

 Swap an edge and make it legal
LegalizeEdge(p

r
, p

i 
p

j
, T)

{
  If (p

i 
p

j
) is an illegal edge

  {
    Let p

i 
p

j 
p

k
 the triangle adjacent to p

r 
p

i 
p

j
 through edge p

i 
p

j

    Flip p
i 
p

j
 and replace it by p

r 
p

k

    LegalizeEdge(p
r
, p

i 
p

k
, T)

    LegalizeEdge(p
r
, p

k 
p

j
, T)

  }
}
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Delaunay Triangulation

 Proof that the algorithm is correct

We have to prove that no illegal edge remains after the insertion of 
point p

r
.

 One may notice that  : 

- Every new edge (by swapping) is linked to p
r

- An edge ought to become illegal only if an adjacent triangle is 
modified (by the insertion of p

r
 or by edge swapping) – it will 

necessarily be checked later on because of the recursion

- Every new edge obtained by edge swapping is therefore legal and 
belong to the Delaunay graph (proof follows)

QED.
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Delaunay Triangulation
 The new edges belong the the Delaunay graph

Case of the insertion of p
r
.

Lets consider the edges p
r 
p

i
, p

r 
p

j
 and p

r 
p

k
. As p

r 
p

j 
p

k
 is a triangle 

from before the insertion of p
r
, its circumscribed circle C does not 

contain any point other than p
r
. One can therefore shrink C, such that 

one gets a new circle C' going through p
r
 and p

i
 and entirely 

contained in  C. It therefore does not contain any other point. This 
means that  p

r 
p

i
 belongs to the Delaunay graph (the conclusion is 

obviously identical for p
r 
p

j
 and p

r 
p

k
).

 Proof is similar if  p
r
 is located

on an edge.

p
r

p
j

p
i

C

p
k

C'
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Delaunay Triangulation
 Proof is similar if  p

r
 is located

on an edge.

p
r

p
j

p
i

p
l

C

p
k

C'
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Delaunay Triangulation

 Do the new edges obtained by swapping belong the the Delaunay 
graph ?

One replaces an edge p
i 
p

j
 by another edge p

r 
p

l
. As p

i 
p

j 
p

l
  is a 

triangle from before inserting p
r
, its circumscribed circle C contains 

only p
r
 (and if it did not contain p

r
, then p

i 
p

j
 would be legal). It is also 

possible to find another circle C' going through p
r
 and p

l
 , completely 

contained in C, thus containing no point. This proves that p
r 
p

l
 indeed 

belong the the Delaunay graph.

p
r

p
j

p
i

p
l

C

p
k

C'
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Delaunay Triangulation

 What about initialization ?
 In fact, one starts with a trivial triangulation (one triangle !). The initial 

triangle is made of one of the extremal vertices of the convex hull of 
the points to be inserted, and two fictive vertices

 The fictive vertices are located far enough so that they are not in any of the 
circumscribed circles of the final triangulation

 However, for numerical reasons, they cannot be set as far as one would like

P
i >0

p
0p

-2

p
-1
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Delaunay Triangulation
 In fact, we won’t assign coordinates to p

-1
 and p

-2
, instead we will 

modify every predicate in which they are involved so the the behavior 
is as if those were located at the infinite.

 Let’s assume the following ordering : p is above q if y
p
>y

q
 or if y

p
=y

q
 and x

q
>x

p
.

 Let  l
-1
and l

-2
 be two horizontal lines (see drawing). p

-1
 is on l

-1
 and such that the 

ordering as stated above is the same as the one induced by a clockwise ordering 
around  p

-1
. p

-2
 is on l

-2
 such that the ordering as stated above is the same as the 

one induced by a counterclockwise ordering around p
-2
 – for every point p

i  
AND p

-1
.

P
i >0

p
0

p
-1

l
-1

l
-2

p
-2
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Delaunay Triangulation

 The Delaunay triangulation of {p
-2
, p

-1
, p

0
 … p

n
} is the triangulation of  

{p
0
 … p

n
} with additional edges joining the right side of the convex 

hull with p
-1
, the left side to p

-2
 and p

-2 
p

-1
.

 Once the triangulation has been computed, it is easy to take out 
every triangle connected to p

-2
 and/or p

-1
.

P
i >0

p
0

p
-1

l
-1

l
-2

p
-2
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Delaunay Triangulation

 Modifications to the predicate of legality
 Let p

i 
p

j
 an edge for which the legality is to be tested. The apex 

points on neighboring triangles are p
k
 and p

l
 .

1 – If p
i 
p

j
 is an edge of the triangle p

0 
p

-1 
p

-2
, then it is legal.

2 – If the indexes i,j,k,l are all positive : classical test

3 – In all the other cases : p
i 
p

j
 is legal iff min(k,l)<min(i,j).

Explanation :

3a – If only one of i,j,k,l is negative, then the edge joining the two points with 
positive indexes is the only legal one, either ij  or kl.

3b – If two indexes i,j,k,l are negative, then only those are necessarily shared 
among (i,j) and (k,l) (otherwise it is case 1, note than in every case the index r>0  
of the inserted point belongs to i,j,k,l)
Then, the legal edge is the one containing p

-1
 (this is obvious because we have 

decided that p
-2
 is located such that no circumscribed circle may contain it, 

including triangles formed with p
-1
)
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Delaunay Triangulation

 Performance of the algorithm is in nlogn (Optimal !)
 This depends on the fact that the lookout of the triangle containing 

the point to insert is in log n (see next course)
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Constrained Delaunay Triangulation

 The previous algorithm gives us a triangulation of the convex 
hull of the set of points.

One often have a discretization of the boundaries of a 
polygon, possibly non convex, and possibly containing 
holes.

 Hence, the Delaunay triangulation may miss some of the boundary 
edges. We must therefore allow them to appear in the final 
triangulation, although they are not necessarily legal.

?
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Constrained Delaunay Triangulation

 A triangulation in which some edges are constrained is a 
constrained triangulation.

 If it respects the “constrained” empty sphere criterion, in the meaning 
that a sphere circumscribed to any triangle p

i
 p

j
 p

k
 does not contain 

any visible point from either p
i
, p

j
 and p

k
, then it is a Constrained 

Delaunay Triangulation.

 Definition of the visibility : two points a and b are visible if the 
segment ab does not intersect any constrained edge..
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Constrained Delaunay Triangulation

 How to constraint a Delaunay triangulation ?
 Algorithm :

Look for the set of triangles intersecting the constrained edge a, 
delete them, keep the pseudo-polygon that bound the void that has 
just been created.

a
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Constrained Delaunay Triangulation

 Cut the pseudo-polygon in two by edge a. That edge will obviously 
be part of the convex hull of each of the parts (independently)

 Notice that the edges of both polygons are necessarily legal, and 
belong the the Delaunay triangulation.

 Proof : those were legal before, and some vertices were taken out, so the edge 
remain part of the Delaunay graph of the subset of vertices taken out from the 
polygon. Moreover, edge a belongs also to the delaunay graph, because it is part 
of the convex hull.
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Constrained Delaunay Triangulation

 Triangulate each sub-polygon separately, and merge them back to 
the original triangulation.

 Note that the pseudo-polygons are not convex and it is possible that 
“exterior” triangles appear. Those should be eliminated 
appropriately.
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Mesh Generation

 Mesh generation 
 Let’s suppose we have made the triangulation of a given contour

The aim here is to generate additional vertices so that the final 
triangulation respects at least two geometrical criteria :

 Size of the triangles
 Shape thereof

 Where to insert these additional vertices in the triangulation ?
 Idea : take advantage that we have a valid (possibly constrained) Delaunay 

triangulation at step n-1 .
 One may use a measure of the geometrical “quality” of edges or triangles, and 

insert a new vertex at the right place to make this measure better, at least locally
 At each step, the local connectivity is recomputed, using e.g. Lawson’s algorithm.
 Some edges cannot be violated (imposed contours), thus Lawson’s algorithm 

must be modified so as to prevent swapping these edges.
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Mesh Generation

 Swap an edge and make it legal (with constraints)
LegalizeEdge(p

r
, p

i 
p

j
, T)

{
  If (p

i 
p

j
) is an illegal edge & is not a constrained edge

  {
    Let p

i 
p

j 
p

k
 the triangle adjacent to p

r 
p

i 
p

j
 through edge p

i 
p

j

    Flip p
i 
p

j
 and replace it by p

r 
p

k

    LegalizeEdge(p
r
, p

i 
p

k
, T)

    LegalizeEdge(p
r
, p

k 
p

j
, T)

  }
}
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Node placement & Mesh generation

 Point placement strategy
 Points are selected on a regular grid

 Vertices falling outside the
triangulation are ignored.

h

S.J. Owen « A survey of Unstructured Mesh Generation Technology, 7 th IMR, 1998
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Node placement & Mesh generation
 Points are at centroïds of triangles

One inserts new vertices until every edge has an acceptable length

l
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Node placement & Mesh generation
 Center of the circumscribed circle (P. Chew, J. Ruppert, J. 

Shewchuk)

The order in which insertions are made is based on the minimal 
angle of a triangle, and one inserts new vertices until the minimal 
angle is above a certain threshold value (30° in principle)

 It is theoretically proven that it
terminates for any threshold angle
below 20.7 ° (cf J. Ruppert, 1995)
In practice, works until
~ 33.8° (cf J. Shewchuk, 1996)

a

Jim Ruppert, A Delaunay Refinement Algorithm for quality 2-Dimensional Mesh Generation
Journal of Algorithms 18(3):548-585,1995
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Node placement & Mesh generation
 By frontal advance (D.L. Marcum)

Vertices are inserted from the boundaries, while maintaining a 
structure for an advancing front. The new vertices are located 
ideally, until the two front merge...

A B

C

Marcum, D.L., and Weatherill, N.P., A Procedure for Efficient Generation of Solution Adapted Unstructured 
Grids, Computer Methods in Applied Mechanics and Engineering, Vol. 127, p. 259, 1995.
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Node placement & Mesh generation
 Middle of a segment of the Voronoï diagram that links the center of 

the circumscribed circles of two triangles sharing an edge. (S. 
Rebay, 1993)

S. Rebay. Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson 
algorithm. Journal of Computational Physics, 106:25–138, 1993.
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Node placement & Mesh generation
 Along existing edges – one should check that neighboring edges are 

not too close
(P.L. George, 1991)

h

P.L.George, F.Hecht and E.Saltel. Automatic mesh generator with specified boundary. Computer Methods in Applied 
Mechanics and Engineering, 92:269–288, 1991.
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Surface Delaunay Triangulation

 Instead of working in the 2D plane, what happens if one 
want to perform surface mesh generation ?

 It is possible to work in the parametric
space of the surface, hence reuse all what
has been said for the euclidean 2D plane

 However, deformations in the above mapping lead to sub-
optimal results.

 Impossible to control the size and shape of triangles – it will 
ultimately depend on the definition of the surface

P u , v={x= f u , v
y=g u , v
z=h u , v

x

y z

u,v
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Surface Delaunay Triangulation

 We have to use the first fundamental form (metric tensor) of 
the surface, which allows us to measure real angles, lengths 
and areas using variables in the parametric space.

ϕ1(d Γ1
uv , d Γ2

uv)=(du1 dv1 )( e f
f g )(du2

dv 2
)=(du1 dv1 ) M1(du2

dv2
)

L=∫
a

b

1d  uv , d uv dt

cos=
1d 1

uv , d 2
uv

1d  1
uv , d 1

uv 1d 2
uv , d  2

uv

A=∬
D

det M1 dudv

with e=Pu⋅Pu  , f =Pu⋅P v  , g=P v⋅P v , du1=
∂u1(t)

∂ t
, dv1=

∂ v1(t)
∂ t

⋯

Γ⃗1
uv (t ):{u=u1(t)

v=v1(t )

Γ⃗2
uv (t):{u=u2(t)

v=v 2(t )

Γ⃗1
uv (t)

Γ⃗2
uv (t)
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Surface Delaunay Triangulation

 Back to our problem !!!
 In our case, distances have to be measured along e.g. edges.

These segments are defined in the (u,v) parametric space, and have 
a parametrization (e.g. variable t taking values between 0 and 1)

The length is therefore, using the first fundamental form:

 If the metric tensor is deemed constant, the integral is easy to 
compute and the result is :

 

as t =1−t ⋅p0
st⋅p1

s

La=∫
0

1

 p1
s− p0

s T e f
f g   p1

s− p0
s  dt

L=∫
a

b  u 't  v 't   e f
f g u ' t 

v 't dt

La= p1
s− p0

s T e f
f g   p1

s− p0
s 
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Surface Delaunay Triangulation

 The modified edge legality check

Amounts to determine the shape of the locus of points situated at a 
constant distance from a given point (the “center”), and going 
through three given points

 In the general case, it is very costly, because the metric tensor is not constant.
 If the metric tensor is constant, then the locus is an ellipse...

 Let us perform a change of variable T (which consists of a rotation 
followed by a scaling ) to bring everything back in a planar 
coordinate system where the measures are euclidean...

u

v

u'

v'

T
pr

s pr
p
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Surface Delaunay Triangulation

 Definition of transformation T

We expect such a distance measure to take place in a local 
euclidean space. In this space, the coordinates are      and   
and the metric tensor is the identity I.

Let us set                  , then we have

Therefore                  and                . Here, J is a transformation 
matrix of T, or Jacobian matrix.

La= p1
s− p0

s T e f
f g   p1

s− p0
s = p1

s− p0
s T M1  p1

s− p0
s 

La= p1
s− p0

s T

M1  p1
s− p0

s =  p1
p− p0

p T

I  p1
p− p0

p 

p0
p p1

p

M1=JT⋅J

La= p1
s− p0

s T

JT⋅J  p1
s− p0

s =  p1
s− p0

s T

JT⋅I⋅J  p1
s− p0

s 
= J⋅p1

s−J⋅p0
s T I  J⋅p1

s−J⋅p0
s =  p1

p− p0
p T

I  p1
p− p0

p 
p0

p=J p0
s p1

p=J p1
s
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 How to obtain J ?
J has 4 independent scalars, however, M

1
 is a symmetric matrix and 

therefore has only 3 degrees of freedom. The system                is 
therefore under-determined and has an infinite number of solutions. 
One need to find one suitable value for J.

 There exists one natural decomposition of a symmetric matrix M into 
the product of two transposed matrices, it is the Cholesky 
decomposition, which always exist for positive definite matrices :
M=ST.S with S = a upper triangular matrix.

 We have therefore :

 To determine if a circle contains a given point, we will use this matrix J to 
transform the coordinates of every point (4 in total). It is advisable to bring back 
the coordinates as variations around a given reference, for instance the inserted 
point p

r
 (which becomes the origin of the local frame)

M1=JT⋅J

M1= e f
f g =S T⋅S=s1 0

s3 s2
⋅s1 s3

0 s2
= s1

2 s1 s3

s1 s3 s2
2 

S=e
f

e
0 g =J
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Surface Delaunay Triangulation
 Finally,

New coordinates :

In this frame, the legality check is the same as in an euclidean 2D 
frame.

u

v u'

v'

pr
s

pr
p

J=e
f

e
0 g 

pi
s

pi
p

with e=Pu⋅Pu  , f =Pu⋅P v  , g=P v⋅P v

pi
p=J⋅( pi

s− pr
s)


