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= |ntroduction

= Segment-Segment intersections

= Polygon Triangulation

= |ntro to Voronoi Diagrams & Delaunay Triangulations
= Geometric Search

= Sweeping algorithm for Voronol Diagrams
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Delaunay Triangulation

= Delaunay triangulation algorithms

Two alternatives

1- Generate a triangulation for a given set of points, known
In advance

= Using Fortune’s algorithm (for Voronoi diagrams) and “dualization”

= Ad-hoc algorithms, not necessarily incremental

2- Points are generated “in line”, at the same time the
triangulation is updated

= Mesh generation / mesh adaptation
= Algorithms must be incremental
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Delaunay Triangulation

= Principles behind incremental algorithms for Delaunay
triangulations

= Insertion of a point p in a triangulation of n—1 points

- Find the entity “containing” the new point
- Insert (topologically) the point in the triangulation

- Modify the triangulation in order to keep the “Delaunay”
characteristic

There exist two close algorithms (equivalent since the Delaunay triangulation is
unique)

= Lawson — edge swapping
a valid (and better) triangulation is guaranteed at each step.

= Bowyer-Watson — Find every triangle that violate the empty sphere criterion,
delete them and build a new cavity. Mesh the cavity (star-shaped cavity), i.e. link
every boundary edge with the new point.
Drawback: it is possible to build non star-shaped cavities (even unconnected) if
predicates are evaluated in finite numerical precision.
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Delaunay Triangulation

= Where is the entity containing the new point ? Geometric
search in general — see next course, sometimes we know
already where to insert the new point

= |nsertion of the point in the existing triangulation.

Case 1 : the point p is located in a triangle T, T

i2

- The red edges are legal by construction.
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Delaunay Triangulation

= |nsertion of the point in the existing triangulation.

Case 2 : the p is located on an edge a,

- The new edges in red are also legal by construction.

- What about the other triangles / edges (the green ones in
particular) ?
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Delaunay Triangulation

= Modify the triangulation so that the “Delaunay” characteristic
IS kept.

= It amounts to legalize every edge that became illegal following the
insertion of the new vertex int the triangulation

= What are these edges ?

= These are the ones that have new neighboring triangles following the insertion.
(here in green)

= All the other edges (black) are still legal for the time being, because nothing
changed in their neighborhood..

= We should therefore check if these
green edges are still legal, and
perform edge swapping if this is not
the case.

= When an edge-swap happens, one
must check the neighboring triangles
in order to make sure all edges are
still legal. If not, swap the next
layer of illegal edges, until no new illegal
edge is found
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Delaunay Triangulation
= Global algorithm

InsertPoint(p ,T)
Input : a point p_to be inserted, and a Delaunay triangulation
Output : A Delaunay triangulation containing p .

{
Find the triangle T, (p, Pyp ,) containing p_

If p_is inside T,

{
Cut 7, in 3 and add the edges linking p_and PP, and p,

LegalizeEdge(p,, p,p,, T)
LegalizeEdge(p , PP 7)
LegalizeEdge(p , p,p., T)

b
Else (p.is on an edge , e.g. p, PP, and p, are the opposite points to p p.)

{
Cut both triangles neighbors to p. P in 4 and insert the edges linking p_and p,, PpPp Py

LegalizeEdge(p ., p.p, T); LegalizeEdge(p , p, Py 7);
LegalizeEdge(p , P,p;s T); LegalizeEdge(p,p,p,T);

}
}
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Delaunay Triangulation

= Swap an edge and make it legal

LegalizeEdge(p, PP, 7)
{
If (p, pj) is an illegal edge
{
Letp.pp, the triangle adjacent to p_p. p; through edge p.p,
Flip p. p; and replace it by p p,
LegalizeEdge(p , p.p,, T)
LegalizeEdge(p,, p,p, T)

b
}

10
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= Proof that the algorithm is correct
We have to prove that no illegal edge remains after the insertion of
point p .

= One may notice that :

- Every new edge (by swapping) is linked to p.
- An edge ought to become illegal only if an adjacent triangle is
modified (by the insertion of p_or by edge swapping) — it will
necessarily be checked later on because of the recursion

- Every new edge obtained by edge swapping is therefore legal and
belong to the Delaunay graph (proof follows)

QED.

11
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Delaunay Triangulation

= The new edges belong the the Delaunay graph

Case of the insertion of p .

Lets consider the edges p p, p,D, and p p . As P,D;P, Is a triangle

from before the insertion of p , its circumscribed circle C does not
contain any point other than p . One can therefore shrink C, such that
one gets a new circle C’" going through p and p. and entirely

contained in C. It therefore does not contain any other point. This
means that p p.belongs to the Delaunay graph (the conclusion is

obviously identical for p,p;and D.D,)-

Proof is similar if p is located
on an edge.

12
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Delaunay Triangulation

= Proof is similar if p is located
on an edge.

13
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Delaunay Triangulation

= Do the new edges obtained by swapping belong the the Delaunay
graph ?
One replaces an edge p.p, by another edge p p. As p.p.D, IS a
triangle from before inserting p , its circumscribed circle C contains
only p (and if it did not contain p , then p.p, would be legal). It is also
possible to find another circle C’ going through p and p, , completely
contained in C, thus containing no point. This proves that p p indeed
belong the the Delaunay graph.

14
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Delaunay Triangulation

= \What about initialization ?

= |In fact, one starts with a trivial triangulation (one triangle !). The initial
triangle is made of one of the extremal vertices of the convex hull of
the points to be inserted, and two fictive vertices

= The fictive vertices are located far enough so that they are not in any of the
circumscribed circles of the final triangulation

= However, for numerical reasons, they cannot be set as far as one would like

p-2 pO
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= In fact, we won't assign coordinates to p , and p_, instead we will

modify every predicate in which they are involved so the the behavior
is as if those were located at the infinite.

= Let's assume the following ordering : p is above ¢ ifyp>yq or ifypzyq and x >x .

= Let / and/ be two horizontal lines (see drawing). p_ is on [ and such that the

ordering as stated above is the same as the one induced by a clockwise ordering
around p . p_ is on [ such that the ordering as stated above is the same as the

one induced by a counterclockwise ordering around p_, — for every point p. AND p ..

> e

] 16
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Delaunay Triangulation

= The Delaunay triangulation of {p_,p ,p, ... p.} is the triangulation of
{p, --- p,} With additional edges joining the right side of the convex
hull with p_, the left sidetop  and p_p_..
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= Once the triangulation has been computed, it is easy to take out
every triangle connected to p , and/or p .
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= Modifications to the predicate of legality

= Letp p anedge for which the legality is to be tested. The apex
points on neighboring triangles are p_and p, .

1-— |fpl.pj is an edge of the triangle p p_ p_,, then it is legal.

2 — If the indexes i,j,k,[ are all positive : classical test
3 — In all the other cases : p,p, is legal iff min(k,/)<min(i /).
Explanation :

3a — If only one of i,j,k, [ is negative, then the edge joining the two points with
positive indexes is the only legal one, either ij or kl.

3b — If two indexes i j,k,[ are negative, then only those are necessarily shared
among (i,j) and (k,/) (otherwise it is case 1, note than in every case the index >0

of the inserted point belongs to i,j,£,1)
Then, the legal edge is the one containing p , (this is obvious because we have

decided that p | is located such that no circumscribed circle may contain it,
including triangles formed with p )

18
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= Performance of the algorithm is in nlogn (Optimal !)

= This depends on the fact that the lookout of the triangle containing
the point to insert is in log n (see next course)

19
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Constrained Delaunay Triangulation

= The previous algorithm gives us a triangulation of the convex
hull of the set of points.

One often have a discretization of the boundaries of a

polygon, possibly non convex, and possibly containing
holes.

= Hence, the Delaunay triangulation may miss some of the boundary
edges. We must therefore allow them to appear in the final
triangulation, although they are not necessarily legal.
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Constrained Delaunay Triangulation

= A triangulation in which some edges are constrained is a

constrained triangulation.

= If it respects the “constrained” empty sphere criterion, in the meaning
that a sphere circumscribed to any triangle p;p; D, does not contain

any visible point from either p, P, and p,, then it is a Constrained
Delaunay Triangulation.

~
-------

= Definition of the visibility : two points a and b are visible if the
segment ab does not intersect any constrained edge..

21
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Constrained Delaunay Triangulation

= How to constraint a Delaunay triangulation ?

= Algorithm :

Look for the set of triangles intersecting the constrained edge a«,
delete them, keep the pseudo-polygon that bound the void that has
just been created.
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Constrained Delaunay Triangulation

= Cut the pseudo-polygon in two by edge a. That edge will obviously
be part of the convex hull of each of the parts (independently)

= Notice that the edges of both polygons are necessarily legal, and
belong the the Delaunay triangulation.

= Proof : those were legal before, and some vertices were taken out, so the edge
remain part of the Delaunay graph of the subset of vertices taken out from the
polygon. Moreover, edge a belongs also to the delaunay graph, because it is part
of the convex hull.

23
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Constrained Delaunay Triangulation

= Triangulate each sub-polygon separately, and merge them back to
the original triangulation.

= Note that the pseudo-polygons are not convex and it is possible that
“exterior” triangles appear. Those should be eliminated
appropriately.

24
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Mesh Generation

= Mesh generation

= Let's suppose we have made the triangulation of a given contour

The aim here is to generate additional vertices so that the final
triangulation respects at least two geometrical criteria :

Size of the triangles
Shape thereof

= Where to insert these additional vertices in the triangulation ?

Idea : take advantage that we have a valid (possibly constrained) Delaunay
triangulation at step »-1 .

One may use a measure of the geometrical “quality” of edges or triangles, and
insert a new vertex at the right place to make this measure better, at least locally

At each step, the local connectivity is recomputed, using e.g. Lawson’s algorithm.

Some edges cannot be violated (imposed contours), thus Lawson’s algorithm
must be modified so as to prevent swapping these edges.

25
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Mesh Generation

= Swap an edge and make it legal (with constraints)

LegalizeEdge(p, PP, 7)
{
If (p, pj) is an illegal edge & is not a constrained edge

{
Letp,p,p, the triangle adjacent to p_p. p; through edge p.p,

Flip p,p, and replace it by p p,
LegalizeEdge(p , p.p,, T)
LegalizeEdge(p,, p,p, T)

}
}

26
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Node placement & Mesh generation

= Point placement strategy

= Points are selected on a regular grid

= Vertices falling outside the
triangulation are ignored.

S.J. Owen « A survey of Unstructured Mesh Generation Technology, 7% IMR, 1998 27
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Node placement & Mesh generation

= Points are at centroids of triangles
One inserts new vertices until every edge has an acceptable length

28
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= Center of the circumscribed circle (P. Chew, J. Ruppert, J.
Shewchuk)

The order in which insertions are made is based on the minimal
angle of a triangle, and one inserts new vertices until the minimal
angle is above a certain threshold value (30° in principle)

= |t is theoretically proven that it ’
terminates for any threshold angle
below 20.7 ° (cf J. Ruppert, 1995)
In practice, works until
~ 33.8° (cf J. Shewchuk, 1996)

Jim Ruppert, A Delaunay Refinement Algorithm for quality 2-Dimensional Mesh Generation

Journal of Algorithms 18(3):548-585,1995 29
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= By frontal advance (D.L. Marcum)

Vertices are inserted from the boundaries, while maintaining a
structure for an advancing front. The new vertices are located

ideally, until the two front merge...

A B

Marcum, D.L., and Weatherill, N.P., 4 Procedure for Efficient Generation of Solution Adapted Unstructured
Grids, Computer Methods in Applied Mechanics and Engineering, Vol. 127, p. 259, 1995. 30
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Node placement & Mesh generation

= Middle of a segment of the Voronol diagram that links the center of
the circumscribed circles of two triangles sharing an edge. (S.
Rebay, 1993)

S. Rebay. Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson

algorithm. Journal of Computational Physics, 106:25-138, 1993. 3
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Node placement & Mesh generation

= Along existing edges — one should check that neighboring edges are
not too close
(P.L. George, 1991)

P.L.George, F.Hecht and E.Saltel. Automatic mesh generator with specified boundary. Computer Methods in Applied

Mechanics and Engineering, 92:269-288, 1991. 1
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= |nstead of working in the 2D plane, what happens if one
want to perform surface mesh generation ?

= |t is possible to work in the parametric

space of the surface, hence reuse all what A
has been said for the euclidean 2D plane

= However, deformations in the above mapping lead to sub-
optimal results.

= Impossible to control the size and shape of triangles — it will
ultimately depend on the definition of the surface

33
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Surface Delaunay Triangulation

= We have to use the first fundamental form (metric tensor) of
the surface, which allows us to measure real angles, lengths
and areas using variables in the parametric space.

r . ! dI' ,d, )=|du, dv =\du, dv,|M
1(t) Lv=v1(t) ¢1( 1 2) ( 1 1) f g dv2 ( 1 1) 1 dv2
ou,lt ov, |t
with e=P“-P" | f=P"P", g=P"-P’, dulz%(),dm:%()

b
L=V, dT™,dT")dr A= [ Vdet M, dudv
a D

b, (4T, dT5)
Vo, (d T}, dTY), (d Ty, dTY)

COSX—

34
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Surface Delaunay Triangulation

= Back to our problem !!!

= |n our case, distances have to be measured along e.g. edges.

These segments are defined in the (u,v) parametric space, and have
a parametrization (e.g. variable ¢ taking values between 0 and 1)

a (t)=(1=1) py+1-p)
The length is therefore, using the first fundamental form:

b

— (i) vinlle f u (1)

L‘N( O VI )
a :1 s ST e f s s

L(a) {\/(pl po) e (p1 po)dt

= |If the metric tensor is deemed constant, the integral is easy to
compute and the result is :

L<a)=\/(p§—p‘8)T(; g)(p?—pé)

35
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Surface Delaunay Triangulation

= The modified edge legality check

Amounts to determine the shape of the locus of points situated at a
constant distance from a given point (the “center”), and going
through three given points

= |n the general case, it is very costly, because the metric tensor is not constant.
= |f the metric tensor is constant, then the locus is an ellipse...

= Let us perform a change of variable T (which consists of a rotation
followed by a scaling ) to bring everything back in a planar
coordinate system where the measures are euclidean...

36
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= Definition of transformation T

g(pf—p3)=\/(pi—pB)TMl(p?—pZ)

T
s s e
L(a)=\/(p1—po) p
We expect such a distance measure to take place in a local
euclidean space. In this space, the coordinates are p; and py

and the metric tensor is the identity 1.

Lia)=\| pi— py) M| pi= pi) =\l pr— pt) 1 2 ]
Letus set M,=J"-J , then we have

L(a)=\/(p?—pB)TJT-J(p‘i—pE)=\/(pi—pS)TJT'I-J(pT—pS)

=\/(J-pi—Ipf))TI(J-pi—J-p8)=\/(pf—p(’i)TI(pf—pﬁ)

Therefore py=Jp, and p/=J p; . Here, Jis a transformation
matrix of T, or Jacobian matrix.
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= How to obtain J ?
J has 4 independent scalars, however, M is a symmetric matrix and

therefore has only 3 degrees of freedom. The system M,=J"-J is
therefore under-determined and has an infinite number of solutions.
One need to find one suitable value for J.

= There exists one natural decomposition of a symmetric matrix M into
the product of two transposed matrices, it is the Cholesky
decomposition, which always exist for positive definite matrices :
M=S'.S with S = a upper triangular matrix.

M1: y f):STS: %1 0 . 51053 = Sf $1%3
f g S 800 s,) Asysy s
J
= We have therefore : S= Ve Je |=]
0 Vg

= To determine if a circle contains a given point, we will use this matrix J to
transform the coordinates of every point (4 in total). It is advisable to bring back
the coordinates as variations around a given reference, for instance the inserted
point p (which becomes the origin of the local frame) 33
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Surface Delaunay Triangulation

= Finally,
e
J= Ve Je| with e=P"P", f=pP"P", g=P" P’
0 Vg

New coordinates :

pl=J-(pi—p;)

In this frame, the legality check is the same as in an euclidean 2D
frame.

39



