y LlEGtE CAD & Computational Geometry
< universite
Course plan

= |ntroduction

= Segment-Segment intersections

= Polygon Triangulation

= Intro to Voronoi Diagrams & Delaunay Triangulations
= Geometric Search

= Sweeping algorithm for Voronoi Diagrams

y LlEGtE CAD & Computational Geometry
< universite
Voronoi Diagrams

= How to compute the Voronoi diagram ?

= For each cell V(p), compute the intersections of all the half-planes
h(p.p) with j#i using the intersection of lines of chapter CG2
Complexity : in nlog n for each cell (one does not know in advance
which intersections will be found in the final shape of the cell)

= There are n cells — n’log n globally. However, the complexity of the
diagram is only O(n)...

= |s it possible to be faster ? — yes !

= Optimum : Q(nlog n)
= Demonstration later on.

y LlEGtE CAD & Computational Geometry
< universite
Voronoi Diagrams

= Line sweeping algorithme for the computation of a Voronoi
Diagram

= Also known as Fortune’s algorithm

Steven Fortune, A sweepline algorithm for Voronoi diagrams,
Algorithmica 2 (1-4),pp. 153-174, 1987
DOI: 10.1007/BF01840357 /

Algorithm in O(nlog n)

Known sweep line process :

- an imaginary line / sweeps the plane
- a status T'is updated at each event
- the event list F contains event in the
order in which they appear (x-wise)

- the Voronoi diagram is built step by step in relation
with T

- By duality, it is another way of computing the
Delaunay triangulation...

y LlEGtE CAD & Computational Geometry
< universite
Voronoi Diagrams

= The paradigm of sweep line algorithms implies an invariant.
Here, it will be the portion of the Voronoi diagram that we
know will not change for subsequent events.

= It is not the portion of the Voronoi diagram on the left of the line /.

In fact, a part of Vor(P) located on the left of / still depends on some
of the points p. that are located on the right.

= More precisely, the part that does not change is the set of points ¢
such that the distance to the line / is greater or equal to the distance
to the poinst p located on the left of /.

The limit of such a domain is a succession of
parabolas, shaped somewhat like a “beach line”.

= The “beach line” is y-monotone.

= The status T will be this beach line.
How does it change when events occur ?
(What are in fact these events ?)

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

= Configurational changes in the beach line

= A new parabolic arc appears

[)
N N

= In fact, only when the line / sweeps past a point p.. This is the first
kind of events (points of P)

Proof : cf Book , p 153

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

= Configuration changes in the beach line

= Existing parabolic arcs may disappear

= This happens only when the beach line moves past a vertex of the
Voronoi diagram, otherwise said, when the line / meets the extremal
point of the circle going through three points p. that correspond the

three consecutive arcs o, of the beach line.

= This is the second type of events (limit circles)

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

= Data structures

= The Voronoi diagram : e.g. a Doubly Connected Edge List. Ideally
one needs a bounding box so that the cells are closed, and the half
edges all able to have a geometrical meaning (a direction and
starting point)

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

= Data structures

= Status T': The beach line — y-monotone — is a binary balanced tree.
The leaves store the parabolic arcs and are sorted by increasing y
coodinate. For each leaf, there is a pointer to an event in the even
list — the limit circle event that correspond to the disapearing of the
corresponding parabolic arc. If it does not yet exist, store e.g. a null
pointer.

The internal nodes inside the tree are the “breaks” in the beach
line. Those are indentified with an ordered tuple (p, p) where p. is
the point corresponding to the inferior parabola, and P, that of the
superior parabola. At each interior node, one ca store a pointer to a
half-edge of the Voronoi diagram

= One may look for the are immediately to the left of a given point p,

inO(log n). Upon tree traversal, at each internal node, it is sufficient
to compare the y coordinate of the point p, with the y coordinate of

the “break”, which may be computed “on the fly” knowing the
position of / (which goes through p,).

y LlEGtE CAD & Computational Geometry
< universite
Voronoi Diagrams

= Data structures

= Eventlist F: It is a priority queue for which the events are sorted
lexicographically by increasing x , then increasing y .
= In this list, on can find all the points p. € P, and the limit circle

events . The point used to classify the cicle events is the rightmost
point of the circle. Moreover, a pointer to the arc inside the status T
shall be stored.

= Every point p. is known in advance, however circle events are not
and must be detected “on the fly”.

¢ LIEGE CAD & Computational Geometry
Voronoi Diagrams

< université

= Determination of circle events

= As each event is processed, triplets of contiguous arcs appear or
disappear

= Those correspond potentially to a circle event (in the future)

= |t is clear that at each new triplet of arcs, a circle event should be
inserted in the list F.

Two remarks:

= |tis possible that, for a given triplet, the two edges that are concerned in the
Voronoi diagram are divergent. In this case, no need to insert a new event (it
would be in the past!)

= |f the edges are convergent it is still possible that the corresponding triplet
disappear before it is processed. This would be because of another event (e.g. a
point event), and has to be considered as a “false alarm”, thus the corresponding
circle event should be deleted from L.

10

<

¢ LIEGE CAD & Computational Geometry

université

Voronoi Diagrams

Two remarks:

= |tis possible that, for a given ftriplet, the two
edges that are concerned in the Voronoi
diagram are divergent. In this case, no need to
insert a new event (it would be in the past !)

11

<

o HEEE CAD & Computational Geometry
Voronoi Diagrams

Two remarks:

= |f the edges are convergent it is still possible that
the corresponding triplet disappear before it is
processed. This would be because of another
event (e.g. a point event), and has to be
considered as a “false alarm”, thus the
corresponding circle event should be deleted
from L.

It is easy if there is a link between the arcs in the
status and the circle events (a pointer) stored
along with the arc in the status.

12

<

¢ LIEGE CAD & Computational Geometry

université

Voronoi Diagrams

= Global algorithm

Voronoi(P)
Input : a set of points P={pp, ..., p, }
Output : a DCEL of the V.D. of P in its bounding box (V)
{
Initialize an event list F with the points in P (‘point’ events)
Initialize en empty status T
Initializer an empty DCEL V
While F contains events
{
Take the first event from F (lexicographic order)
If it is a “point” event then ProcessPointEvt(pi)
Else ProcessCircleEvt(f) // f is the leaf in the status corresponding to the arc that will be deleted
}
The internal nodes of T are half edges of the V.D. they should be limited by the bounding box so that “outer” cells
are bounded and allow traversal
Walk the DCEL and create faces (cells)

b

13

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

®.p)

ProcessPointEvt(p)

If T is empty, insert p, into T
s o,

{

Look for the arc o immediately on the left to p, ; it is associated to another point P,

If the leaf containing o has a pointer toward a circle event in F, delete that event.
Replace the leaf in T with a subtree having 3 leaves that correspond to the 3 new triplets
In this subtree :
The middle leaf corresponds to the new arc o, associated to p, ;
The two others are copies of the old arc a (cut in two)
Insert two new internal nodes (pl.,pj) and (pj,pl.)
Re-balance the tree.
Create two new half edges in the DCEL 'V, for the edge separating V(p,) et "p)

Check that the triplets of consecutive arcs that are above or below the new arc o (from p.) correspond to
converging edges : if yes then add a corresponding circle event in the list F.

}
}

14

¢ LIEGE CAD & Computational Geometry

< université
Voronoi Diagrams
R 0
©:) >
B T
ProcessCircleEvt(c) | | ‘ |
{

Delete the leaf ¢ (that contain the arc o) from T.

Update the tuples in the internal nodes of T

Delete every circle event associated to a (they can be found by walking T from c)
Add the center of the circle as a new vertex into the DCEL of the V.D.

Create two new half edges that correspond to the new triplets

Check that the new triplets correspond to converging edges : if yes then add a corresponding circle event in the list
F.

15

<

¢ LIEGE CAD & Computational Geometry

université

Voronoi Diagrams

= Some degenerate cases :

= At the beginning of the algorithm : points having the same x
coordinate

= Concyclic points (4 or more)

= Point event exactly on the right of a break in the beack line (same y
coordinate)

= Points corresponding to three successive arcs that are also co-linear

16

<

¢ LIEGE CAD & Computational Geometry

université

Voronoi Diagrams

Some othe types of Voronoi diagrams

17

<

¢ LIEGE CAD & Computational Geometry

université

Voronoi Diagrams

= Order p Voronoi diagrams

Aims to build regions closest to p of the sites
Order 1 diagram is the regular Voronoi diagram

With # sites, it is possible to build a diagram of maximum
ordern—1

This diagram of order n — 1 is also called the Maximum
Distance Diagram (MDD)

18

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

= Order 2 diagram

Cell where
p,and p_ are

the closest
P @®

Cell where
p, and p_ are

the closest
Cell where
p,and p, are
the closest

= Order n—1 diagram

Cell furthest

away
from p,
13 Cell closest
P, o top, =P,
b p, (furthest
\;,szﬁ) p 8 away
e ® p fomp)

19

<

o HE&E CAD & Computational Geometry
Voronoi Diagrams

= Properties of the MDD
Let P={p, ... p .} asetof points in the plane

= A point p. of P is associated to a cell of the

MDD of P only if it belongs to the
convex hull of P.

= The proof is trivial : a point p inside the
convex hull of P, is never the furthest away from
any other point ¢ : on a straight line joining p and g,
there necessarily exist points on the convex hull
such that the distance to ¢ is greater.

20

<

¢ LIEGE CAD & Computational Geometry

université

Voronoi Diagrams

= Properties of the MDD

= The cells are infinite, hence there are no
cycles in the MDD, therefore its graph is
a tree.

Proof : from a point ¢ ; located in a cell
associated to p, one draw a line (gp).

For every point of the half line from ¢ going
opposite to p, p. is the most far away

point from P.

= There are O(n) cells, vertices; edges
(the proof is similar to the one for regular
Voronol diagrams)
In particular, n,<2n—3

21

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams
= Properties of the MDD

= The center ¢ of any circumscribed circle to P
(three points or more) is located on a vertex of the MDD

= Or exactly on the middle of a segment joining
the two sites associated to an edge of the MDD
(two points).

\

22

<

¢ LIEGE CAD & Computational Geometry

université

Voronoi Diagrams

= Computation of the MDD

- Computation of the convex hull of P. The vertices located on the
convex hull are ordered in a cycle s, ... s, (seen in a previous

chapter)

- One « mixes » randomly the vertices that hare located on the
convex hull. Lets call p, ... p, , this ordering.

- One takes the vertices one by one : k=0... -4 (p, , ... p,)

- The preceding vertex is stored (clockwise order) and the successor
(anticlockwise) : to p, , correspond S and we associate S,

and s 41 mod (h-k)

- One takes off p, . (hence sj) from the cycle (while updating the
cycle so that it remains ordered ...). Therefore, p, , . cannot be the
predecessor or successor of points canceled later on

1 mod (h-k)

- Finally, one obtains a structure that allows ; starting from 4 points
of the convex hull, to rebuild the convex hull while maintaining the
ordering at every moment. 23

<

¢ LIEGE CAD & Computational Geometry

université

Voronoi Diagrams

= Computation of the MDD

- Associated to a point p, one keeps a pointer to the most anti-
clockwise edge of the cell associated to P

24

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

= Computation of the MDD

- Incremental approach : from the MDD of p. , one builds the MDD
for p,

succ(p,,,)

Cellule
de succ(p,)

‘e ° Cellule de ™ Cellule de

7 Cellule d ~
» Cellule de suce(p) ‘. pred(p) Cellule de p,

pred(p) 25

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

= Computation of the MDD
- The cell for p. comes “in between” that of pred(p,) and succ(p))

- These two cells are separated by a half line that is part of the
bissector of pred(p,) and succ(p))

- succ(p,) has in fact a pointer on this edge.

= - The bissector of p. and succ(p,) induces a new edge (a half line, in
red)

Cellule @ ° Cellule de
de pred(p,) suce(p))

26

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

= Computation of the MDD
- One has to traverse the cell of succ(p) in the clockwise order to
know which edge is intersected by the new half edge.

- From the other side of this edge, there is the cell corresponding to
another pointpj

- One traverse this cell again, to find the intersection with the
bissector of pD,

D,

-
~aa
S
-
S~

Cellule de ™.
succ(p,)

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

= Computation of the MDD

= - One repeats this set of operations until we meet pred(p), which wil
give the other half-line that bounds the cell of p..

= Do not forget to update the pointers between the existing points p.
and the corresponding edges (most anticlockwise) ...

<

¢ LIEGE CAD & Computational Geometry

université

Voronoi Diagrams
= Computation of the MDD

= The computation may be initialized with a MDD of the 4 first vertices
p,---p, for which the MDD is trivial :

29

¢ LIEGE CAD & Computational Geometry

< université

Voronoi Diagrams

= Complexity of the algorithm

= |nitial convex hull : O(nlog n), contains the » points in the worst case.

= After the insertion of p, the corresponding cell has & edges.

= Hence, to build this cell from the MDD obtained after the insertion of p_
, the algorithm has walked in &£ neighboring cells.

= These k cells are separated by a subtree that has at most 243 distinct
edges, and in the worst case, one will walk these edges two times,
hence a total of 446 tests (linear in k)

= The MDD at step i has at most 2/-3 edges. Each edge
separates two cells. So, in average, each cell has less
than (4i—6)/i edges, which is smaller than 4.

= Each point p.has the same probability to be inserted at
the end of the process, so globally the complexity to
build the MDD is in O(n).

\ = Globally, the complexity is therefore in O(nlog n) with a
storage in O(n). 30

-~
e
~
-
-~

¢ LIEGE CAD & Computational Geometry
Voronoi Diagrams

< université

= Application of the MDD
= Metrology (in relation with the classical V.D.)

= Dertermine the two min-max circles having the same center that
approximate a cloud of samples (coming e.g. from a laser scanner
operating on a machined cylindrical part, to asses the quality of the
machining)

= There are multiple cases :

= The interior circle (max size) goes through 3 or more samples — its center is
therefore on a vertex of the classical V.D. The exterior circle is then coincident
with only one point (the one corresponding to a cell of the MDD)

= The exterior circle (min size) goes trough three or more points — its center is
therefore on a vertex of the MDD. The internal circle is then coincident with only
one sample (that corresponding the a cell of the V.D.)

= Finally; the external circle goes through two points, as well as the interior circle.
The center is therefore at the intersection of an edge of the MDD, and one of the
V.D.
To compute these circles and find the optimum, one must therefore

compute the arrangements between a V.D. and the MDD.

31

<

¢ LIEGE CAD & Computational Geometry

université

Voronoi Diagrams

= For each vertex of the MDD, find the
point of P that is the closest
(gives 4 points)

= For each vertex of the V.D., find the
point of P the most far away
(gives 4 points)

= For each intersection between the V.D.
and the MDD, determine the 4 points in
P

= For each of these groups of candidates,
find the one which gives the smallest
ring.

= This may be done in O(»?) in the
worst case

= There may be O(»?) additional sites due
to the intersection of the two graphs.

32

&

LIEGE CAD & Computational Geometry

université

Voronoi Diagrams

= |n the present case; 13 combinations
have to be checked

33

:; uLnll\:EeElE CAD & Computational Geometry
Voronoi Diagrams

= Voronoi diagrams in other norms (/7,p#2 ; polygonal ...)

Uniform L' norm “local” polygonal norms

34

