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Course plan

= Introduction
= Segment-Segment intersections
= Polygon Triangulation

= Delaunay Triangulations
= Geometric Search
= Voronol Diagrams
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Polygon Triangulation

= Applications

= Graphical display of polygons

= Graphic cards in computers know how to display line
segments and triangular patches, and points.

= Every complex entity must be decomposed into triangles
or lines, and displayed as such. It is the case of
polygonal patches

= This decomposition is made by the graphic card (using
the GPU) or by the host computer (in the graphic driver),
even if the user believes that the software interface
allows to display polygons in a native way.

= This is in fact the case for the visualization code used in
this course...
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Polygon Triangulation

= Another application

= “Art gallery” Problem

= Be able to supervise a complete floor in an art gallery
using an adequate (minimal) number of video cameras
placed in appropriate locations

| S
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Polygon Triangulation

= Link between the art gallery problem and the
triangulation of a polygon P

= Ex. Convex Polygon : may be supervised with only one
camera

= What is the number of cameras needed to supervise an
n-sided polygon
= We do not look for the smallest number ! (hard problem — NP
complete)

= The answer is not trivial : an n-sided polygon may have a very
complex shape.

= We'll try to decompose P into triangles, which are easy to
supervise individually, since triangles are necessarily convex.
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Polygon Triangulation

= We'll transform the shape into triangles by linking
non adjacent vertices on the contour.
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= Does such a triangulation exist for an n-sided
polygon : proof by induction.

For n=3, it is trivial. Let n > 3 and let us state that the
triangulation exists for all m <n. We will show that a
diagonal slicing the polygon exists. Let b the leftmost
vertex, and a and c the two adjacent verticesto b ; If ac is
completely inside the polygon, then we have found a

diagonal.
a

The polygon may be
decomposed in two : one
triangle with p=3 vertices and
another polygon with g < n
vertices, with p+g=n+2.

(in our case, g=n-1)
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If the segment ac is not entirely contained inside, then let us
consider the vertices located inside the triangle abc.

Among these, let w be the furthest away from ac.

Then, bw is a diagonal. (If it is not be the case -bw intersects
some of the sides of the polygon- then it means that w was
not the point furthest away from ac, which is contradictory.)

In this case, the polygon is cut in
two, one with p vertices, the other
with g vertices, withp <n, g <n
and p+g=n+2.

= In both cases, the slicing may be

repeated until only triangles
remain.
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= How many triangles ?

= For a convex polygon, it is easy: m=n — 2 triangles. Let’'s
suppose this true for any polygon, in particular for polygons
having p,q < n vertices.

By taking a diagonal to splice the polygon in two,as in the
steps before, one gets p+g=n+2, with p <n, and g < n.

Each sub-polygon is decomposed into m =p—2and m =q —2.

Therefore, the initial polygon is decomposed into
m=m+m=p-2+q-2=n+2-4=n-2 triangles. QED
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Polygon Triangulation

= Let's go back to the initial problem

1 camera per triangle 1 camera per edge

n—2 cameras n—3 cameras
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Polygon Triangulation

= Let's go back to the initial problem

1 camera per pair of triangles 1 camera for some vertices

~n/2 cameéras ~n/3 cameéras ?

10
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= How to determine the sites for cameras ? — 3-
coloring

= Each edge must link to two
distinct colors

= Cameras will be located on
vertices of a give color (e.g. grey)

= The 3-coloring depends on the
triangulation (if it is unique, it is
only for a given triangulation)

= Does such a coloring always exist
?

11
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Polygon Triangulation

= Existence of the 3-coloring.
= |ets consider the connectivity graph of
the triangles (dual graph of the
triangulation 7)

= |t is obvious that it is a tree, because if
one takes a diagonal out of T, then the
graph becomes disjoint because we cut
the triangulation into two.

12
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Polygon Triangulation

= Existence of the 3-coloring.

= One can walk along the tree from any
vertex k. At each new vertex, [ for
iInstance , one knows the both triangles #(k)
and #(/) share an edge, and that edge is
already colored. Only one color choice for
the remaining vertex of #(/).

= Every time on jumps from triangles to
triangle in the graph, one uses one of the
remaining edges of the tree T'; therefore
the choice of the color for the next vertex is
always possible.

= The coloring is done in O(n) operations.

13
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Polygon Triangulation

= Note :

= The 3-coloring works only if the graph is a tree.

= Otherwise, it is easy to find a counterexample : cyclic graph
because of an internal vertex

A 4" color is at least needed
14
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Polygon Triangulation

= Cycles coming from holes in the polygon

= Solution : Change the patch into a simple polygon by
doubling some vertices

15
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Polygon Triangulation

= Solution : Change the patch into a simple polygon by
doubling some vertices

16
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= In fact, the 4-coloring always exists for a planar
graph (hence for a triangulation in the plane)

The conjecture has been proposed in 1852 by a british

botanist, who found that coloring the counties of England
needed only 4 colors.

= Proof only in 1977 using... computers.

Appel, K. and Haken, W. “The Solution of the Four-Color Map
Problem” Scientific American 237, 108-121, 1977.

Appel, K. and Haken, W. “Every Planar Map is Four Colorable”,
Contemporary Mathematics 98, Amer. Math. Soc., 1989

17
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Polygon Triangulation

= Because of the 3-coloring, the number of cameras
Is the integer part of »n/3, in the worst case.

It is often possible to use less cameras ( e.g. for a
convex polygon,1 is enough), however there are
polygons for which the figure above is a minimum.

Exactly n/3 teeth, exactly n/3 cameras.

18
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= Back to our problem...

We need a triangulation
= Algorithm 1,l§<Ear clipping»

a An « ear » is a sequence a, b ,c of

" consecutive vertices forming a triangle
entirely in the polygon, which does not
contain other vertices.

= The principle is to withdraw such ears
as they appear ...

Does a polygon always have ears ? -
YES ! - it even always have two ears : cf

Meisters, G. H., "Polygons have ears."
American Mathematical Monthly 82 (1975). 648-651

19
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Two « ears »

20
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Algorithm 1, « Ear clipping ».

= A naive implementation leads to a O(n*) complexity

Find an ear— O(n*) =

Eliminate it — O(1)
Find a new ear — O((n —i)?)

= |t is possible to do better : in O(n?)

Arrange the vertices in 4 lists :

- one for every vertex (circular list) — O(n)
- one contains the reflex vertices (concave) — O(n)
- one containes the convex vertices — O(n)

- one contains all the ears — O(n?)
Take the 1%t ear; eliminate it — O(1)

Check for neighboring vertices in the lists:
- If it was a convex vertex, it remains so
- If if was an eair, it remains so

Repeat n-2 times

n-2

- If it was a reflex vertiex, it may change to be convex, or an ear times

On needs therefor test if it becomes a new ear — in O(n — i)

Update all lists — O(1)

21
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Polygon Triangulation

= |s it possible to do better than O(n?) ?

Convex polygon : O(n)

" Intersection in
one piece

o
of
of
o
o
o
of
‘.

Monotonous polygon
with respect to an orientation 6 : O(n)
(formal demonstration later)

23
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= Second algorithm, use of a decomposition into
simpler polygons
ldea : decompose in sub-polygons that have a simpler

shape so that the triangulation is deemed more simple.

However : decomposition into convex polygons as
difficult as the triangulation itself — remains monotone

polygons
Algorithm 2 has therefore two parts :

— Decomposition into monotone sub-polygons (we hope in
o(n?) , e.q. O(nlogn) )
— Triangulation of the sub-polygons

24
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= Decomposition along x

Some special vertices do exist. These make the
polygon non monotone

= These are the vertices for which
there is a change of the
apparent orientation (with respect ..\
to the reference line) when s[
one follows the exterior of the polygon.

= |t is from these vertices that we will add
diagonals to achieve the decomposition

25
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= Classification of vertices

@ « regular » vertex

B « start » vertex

[ « end » vertex

< « separating » vertex
» « fuse » vertex

= The « start » vertex has
two neighbors to the right
and an interior angle below .

= If the angle is above & the vertex is « separating »

= The « end » vertex has two neighbors to the left, and an interior
angle below .

= If the angle is above r the vertex is « fuse »
= |[n all other cases, the vertex is « regular » 26
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= |tis clear that a monotone polygon does not contain any « fuse »
or « separating » vertices

= Same as to prove that a non monotone polygon contains at least one
« fuse » or « separating » vertex.

= Non x-monotone — a vertical line / intersects P in more than one
connected component. Choose / such that the lowest intersection is a
segment — but not a single vertex.

Separating [
vertex
<
S
—

-
—"
-

Let p be the point under the boundary, and ¢ the point
above it.

Lets start from ¢ and go along the boundary so that the
inside of the polygon is at the left of the boundary.

At some point, / is intersected again, at point r.

If » # p , then we fond an extremal vertex that is a
separating vertex.

If » =p, lets walk the other way round. 27
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= |f »=p, lets walk the other way round.. Like before, one
intersects / at a new point »'. Necessarily, ' # p , otherwise it
would mean that the intersection of / with P has only one
connected segment.

= Thus, there exists one vertex to the right, which is necessarily
a fuse vertex.

= Therefore, any non x-monotone polygon has at least one
separating vertex and/or one fuse vertex.

Fuse vertex

28
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Polygon Triangulation

= That means if one eliminates all separating and fuse vertices
(i.e. transform them into other types of vertices), the original

polygon would have been decomposed into monotone
polygons.

= |t is done by adding diagonals : one to the left for each
separating vertex, one to the right for each fuse vertex.

= The difficulty lies in linking these diagonals to other vertices of
the polygon.

29
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Polygon Triangulation

= Use of the planar sweeping (again!)

= Events are vertices of the original polygon (no new
events are created)

= Those are sorted in lexicographic order, in a priority
queue.

= The status T allows to build diagonals as the line sweeps
to the right

30
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Polygon Triangulation

= \WWhat to do when / meets an event ?

= Case of « separating » vertices
= One should link it to a close vertex so that we

do not intersect other edges.
Let a, be the edge immediately below s,
along /, and q, that immediately above.
Then it is always possible to connect s,
to the rightmost vertex between a, and a,
, and to the left of 5. If it does not exist,
simply use the leftmost vertex of a, (ora,).

In every case, this vertex is marked
as corresponding to g, : corr(a).

s, 1n a counter-clowise order

a,—S8;8;+
a, 1—5,-159
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= \WWhat to do when / meets an event ?

= Case of « Fuse » vertices

= They must be linked to close vertices so that
we do not cross edges — BUT it cannot —>
be done immediately (the potential vertex
being on the right of /)

= One can notice that s.can be marked
as corresponding to de a, at this point.
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Polygon Triangulation

= \WWhat to do when / meets an event ?

= Case of « Fuse » vertices

= When [ moves further, it meets s
which becomes the new corresponding vertex -
ofa.. S

J :

= |t is a this point that one can link
s with s. by a diagonal.

= This is done only if s, is a fuse vertex !

= Itis possible that s is a separating vertex
it is good - one diagonal for two.
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= Status to be updated at each event

= Binary search tree T'— contains the edges for which the interior of the
polygon is “above”.

= The ordering in this tree is based on the vertical position : lower edges are
found before upper edges.

= For each edge, the vertex to which it “corresponds” is stored
= Forevery event s, , the status is updated :

= s;I1s a « start » event : insert edge q, in T, update corr(a)=s,.

= s;is an « end » event : if corr(a_ ) is a « fuse » vertex then create a
diagonal between s; and corr(a_,) . Erase a_, from T.

= 5, IS @ «separating » vertex
Search for the edge a, located below s in T

Create a diagonal between s. and corr(aj)
Update corr(aj)Zsi
Inserte a, into 7"and set corr(a)=s. .
34
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= s is a « fuse » vertex

if corr(a_,) is a fuse vertex
create the diagonal between s. and corr(a,,)
Delete a_, from T
Search the edge a, directly below s, in T
If corr(a) is a fuse vertex

create a diagonal between s, and corr(aj)
Update corr(a,)=s,.

= s.is a « regular » vertex
If the interior of P is above s
If corr(a,,) is a fusion vertex
create a diagonal between s, and corr(a_ )
delete a_, from T
Insert a. into T"and update corr(a)=s,
Else search in T which a; is below s,
If corr(a) is a « fuse » vertex
create a diagonal between s, and corr(a,)
Update corr(a) =,

35
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= Performances :

= Building the event queue : O(nlogn)

= Every event takes at most O(logn), and there are
exactly n events.

= Allin all, O(nlogn)
= Storage : O(n)

36
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= Triangulation of monotone polygons : again by planar
sweeping

= Use a stack S, in a lexicographic order

= Contains the vertices that have been already met but should be
bound to other vertices — takes the shape of a “cone”.

= TwoO cases :

= The next vertex is on the same side of the 1¢t vertexion the stack
= Ornot ... :

Stack S
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Polygon Triangulation

= |f the next vertex is on the same side as the first on stack

= One can try to link successively the vertices on the top of the
stack to the current vertex.

= At one point, we must stop (a diagonal cuts the polygon)

Stack S

38
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Polygon Triangulation

= |f the next vertex is on the same side as the first on stack

= One can try to link successively the vertices on the top of the
stack to the current vertex.

= At one point, we must stop (a diagonal cuts the polygon)

Stack S

S5 S7

SlO

39
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Polygon Triangulation

= |f the next vertex is on the same side as the first on stack

= One can try to link successively the vertices on the top of the
stack to the current vertex.

= At one point, we must stip (a diagonal cuts the polygon)

Stack S

S5 S7

SlO

40
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Polygon Triangulation

= |f the next vertex is on the same side as the first on stack

= One can try to link successively the vertices on the top of the
stack to the current vertex.

= At one point, we must stip (a diagonal cuts the polygon)

Stack S

= At the end, one must push the first and last vertex linked back

onto the stack
41
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Polygon Triangulation

= |f the next vertex is on the same side as the first on stack

= One can try to link successively the vertices on the top of the
stack to the current vertex.

= Sometimes, merely push the current vertex on the stack ...

Stack S

S1 S7

Sy
Sy
Ss
S

10

42
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Polygon Triangulation

= |f the next vertex is NOT on the same side as the first on
stack

Stack S

5y 57

S,
Sy
S5
S

10

43
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Polygon Triangulation

= |f the next vertex is NOT on the same side as the first on
stack

= One can successively link all vertices from the stack but the last
one to the current vertex

Stack S s

5

2

4

S
S
S5 S
S

10

44
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Polygon Triangulation

= |f the next vertex is NOT on the same side as the first on
stack

= One can successively link all vertices from the stack but the last
one to the current vertex

Stack S s

45
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Polygon Triangulation

= |f the next vertex is NOT on the same side as the first on
stack

= One can successively link all vertices from the stack but the last
one to the current vertex

Stack S s

46
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Polygon Triangulation

= |f the next vertex is NOT on the same side as the first on
stack

= One can successively link all vertices from the stack but the last
one to the current vertex

Stack S s

Sll

5y

= At the end, the ex-first vertex is pushed on the stack again

= One then processes the next vertex, here s,
47
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TriangulateMonotonePolygon(MP)
Input : an x-montone polygon MP
Output : a triangulation of MP
{
Fuse the vertices of the superior and inferior chain into a common structure. The vertices are classified in a
lexicographic order, t is the first (leftmost) and, t | the last one.

Initialize an empty stack S, and push t  and t,
For j from 2 to n-2

{

If tj and the 1% vertex on the stack are on different chains

{

Pop all the vertices from the stack, create a diagonal between those and the current vertex t,

except the last on the stack.
Push t and t. on the stack

}
Else

{
Pop one vertex from the stack S ;
Pop the other vertices one by one as far as one can make a diagonal (not crossings)
Push back the last pop-ed vertex, and t,

b
b

Create diagonals between t | and all the remaining vertices in the stack, except the first and last.

}

48
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Polygon Triangulation

= Complexity of the algorithm

= Ordering of vertices is in O(n) because the polygon is
monotone !
= The loop is done #n-3 times

= |n the worst case, 2n-4 vertices are “pushed” on the stack
= The number of “popped” vertices cannot exceed this value 2n-4
= Each individual operation is in constant time O(1)

= The complexity is therefore O(n)

49
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Polygon Triangulation

= Complexity of the complete triangulation algorithm

= Decomposition in monotone polygons : O(nlogn)

= |t generates £ monotone polygons, each van be
triangulated in O(n)). Of course, Zn =0(n)

= Therefore the whole thing is in O(n)
= As a consequence, the total complexity is

dominated by the decomposition into monotone
polygons : O(nlogn)

50
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Polygon Triangulation

= Some remarks

= |t is not an optimal algorithm for simple polygons
(without holes)

= There exist more involved alternatives in O(n)

= B. Chazelle. Triangulating a simple polygon in linear time. In
Proceedings of the 31st Annual Symposium on Foundations of
Computer Science, IEEE, 1990, pages 220-230.
= But it is more general because it works with holes. In this
case, it is actually optimal, since the theoretical limit is
precisely Q(nlogn) .

51
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Polygon Triangulation

= In 3D : “tetrahedralization” of an n-sided polytope

= Much, much more difficult !

= Sometimes impossible without adding internal
vertices (called Steiner points)

= Knowing if one needs Steiner points : NP — hard.

J Ruppert, R Seidel, On the difficulty of triangulating three-
dimensional nonconvex polyhedra, Discrete & Computational
Geometry, 1992, Springer.
= The number of steiner points is bound by O(n+r?) , ris
the numbler of reflex edges (for a non convex polytope)

= The number of tetrahedrons is not linear with the number
of vertices on the boundary of the polytope...

52
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Polygon Triangulation

= Simple polyhedron that does not yield a
triangulation in O(n) tetrahedrons...

n vertices

n vertices

Totally, there are 2n vertices and (n—1)* tetrahedrons

53
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Polygon Triangulation

= Example of simple polyhedron that is not tessellable
without Steiner points...

.
“““
L

.

Reflex faces/edges | .

Schonhardt’s polyhedron

E. Schonhardt. Uber die Zerlegung von Dreieckspolyedern in

Tetraeder. Math. Ann., 98:309-312,1928. N



