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Abstract 

We present an algorithm for determining if a ray intersects a 

triangle interior; and computing intersection point parameters as 

well as distance of intersection in response to the ray intersecting 

a triangle interior. Particularly a variation of a hybrid test having 

all benefits of Plücker and projected barycentric tests is 

proposed. The test is also vectorized using SIMD instructions for 

efficient handling ray packets. It is essential for achieving high 

ray tracing performance on modern CPUs. 

Our implementation also detects axis-orthogonal triangles and 

processing them separately. 

For maximum performance we also introduce a method for 

triangle representation, using only necessary pre-computed 

values.  

We also present inherently thread-safe and memory efficient 

alternative of mailboxing to avoid unnecessary intersection tests 

for ray packet in case when many leaves share the same triangle. 

Keywords: ray-triangle intersection, SIMD, Plücker test. 

1. INTRODUCTION 

A ray tracing is a well known method used in modeling of a 

variety of physical phenomena related to light propagation in 

various media [1, 2]. Although ray tracing is computationally 

demanding, operations and data access costs can be efficiently 

amortized over rays bundled in a packet [3, 4]. This allows for 

reducing the required memory bandwidth, which is known to be 

one of the major bottlenecks of current CPU architectures. 

The ray-tracing algorithm basically consists of the following 

operations:  

• traversing of the scene in a front-to-back manner until a 

leaf is reached; 

• test all entries in the leaf’s primitive reference list 

(typically, indices referring to a list of scene primitives) 

and retain the nearest intersection; 

Researchers proposed algorithms for tracing coherent ray packets 

instead of single rays [3, 5] using SIMD instructions. Thus a fast 

ray-triangle intersection test which can be also efficiently 

implemented using SSE instructions is also the key factor for 

increasing performance especially since ray-triangle intersection 

test is the one of the most frequently performed. 

In this paper a ray r(t) with origin o and normalized direction d is 

defined as r(t) = o+ t*d, while a triangle is defined as (p, e0, e1) 

– by vertex and 2 edges. 

The intersection (hit) point can be described by u, v barycentric 

coordinates to allow representation of the point as a linear 

combination of triangle vertex and edges: 

ph = p + e0*u + e1*v; 

In the ray-triangle intersection problem we want to determine if 

the ray intersects the triangle and to compute hit point 

parameters, namely u, v as well as value of t   - distance of 

intersection (see Figure 1). In addition we must avoid numerical 

errors which can result in visible artifacts. Barycentric 

coordinates u, v are typically used in ray-tracing for further 

processing (for example, computation of texture coordinates, 

normal interpolation and so on). 

 

Figure 1: Ray-Triangle Intersection Algorithm finds whether 

intersection point ph exists. If yes, computes the u,v 

parameters of intersection (such as ph = p + e0*u + e1*v) as 

well as distance t={o, ph}. 

A triangle may overlap many leaves and it leads to the same 

primitive being tested multiple times during traversal of a ray 

packet. These multiple intersections can be avoided by 

mailboxing technique [1, 6, 7]. We introduce very compact, fast 

and thread-safe alternative of mailboxing that doesn’t require any 

additional per-primitive data or large look-up tables. 

2. PREVIOUS WORK 

Initially algorithms solved ray-triangle intersection problem 

simply by computing the intersection with three boundary planes 

defining the extent of the triangle and then testing if the 

intersection point is inside the edges.  This approach requires 

significant memory for the storing planes. 
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Another approach is to use some parametric representation like 

[6, 8]. The basic idea behind this test is to project the triangle 

onto one of the three axis-aligned planes (along so called 

dominant axis selected according triangle plane orientation) and 

to perform the computation of the barycentric coordinates in 2D 

instead of 3D. As the distance computation involves a costly 

division and the subsequent instructions depend on the result, the 

Wald’s implementation [6] uses Newton-Raphson iteration for 

computing the inverse resulting in observable but moderate 

speed up. 

Ray-triangle intersection test should be considered in the context 

of ray tracing where ray usually traverses some acceleration 

structure and is tested against some number of triangles met 

during traversal step. The algorithm searches for the closest 

intersection. So ray-triangle intersection test consists of two 

logical steps:  

a) computing distance from ray origin to the point where the ray 

intersects the triangle plane and testing if it is the closest 

intersection and distance is greater or equal to zero (distance 

test), 

b) testing if that ray-plane intersection point lies inside the 

triangle (aperture test).  

Usual strategy in the most of algorithms published is performing 

distance test first and do so called early exit if distance test is not 

passed thus skipping an aperture test. The fact that it is not 

necessarily the best performing strategy stayed unnoticed for a 

long time. The statistics presented in [5] shows that at least in 

case of spatial sub-division acceleration structures the distance 

test passes far more often than aperture test. So performing early 

exit using results of an aperture test should be more beneficial 

than performing distance test first. The only problem is 

developing fast aperture test that doesn’t involve distance 

computations or costly divisions; and Plücker coordinates test 

exactly solves the problem. 

The Plücker test takes advantage of the properties of Plücker 

coordinates [11, 14], which will be briefly described in the next 

section. Instead of using barycentric coordinates for the aperture 

test, the Plücker test relies on testing the relations between a ray 

and the triangle edges. 

We further optimized Plücker test by accomplishing more 

compact precomputed data representation, reducing overall 

arithmetic operations count. As additional benefit a branchless 

implementation of the test is possible by generating a mask for 

result of computation thus enabling fast ray-triangle intersection 

on architectures with in-efficient branches (e.g. GPUs).   

For further speed up of triangle intersection we use SSE 

instructions, in the context of ray packets. In order to avoid 

additional instructions for data rearrangement (which can be 

costly using SSE), our algorithm relies on a small amount of 

precomputed data (see section 4.1) for every triangle. 

Mailboxing is a technique to avoid multiple intersection tests 

with triangles that overlap many different leaves [1, 6, 7].  In 

standard mailboxing, each ray gets a unique ID assigned to it, 

and each primitive store the ID of the last ray it was tested with. 

During traversal the duplicate intersection tests can be avoided 

by simply comparing the current ray ID with the ID of the last 

tested ray. Such mailboxing requires a significant amount of 

memory (one integer or pointer per primitive to store ray ID), and 

can easily lead to costly, incoherent memory accesses and cache 

thrashing [5]. Furthermore, both memory consumption and cache 

thrashing get worse when using multiple threads, as the mailbox 

cannot be shared between threads. Wald in [6] introduces hashed 

mailboxing which has been shown to be even less efficient than 

“standard” mailboxing in the general case, though is thread-safe. 

Our SIMD-fashion mailboxing alternative is more efficient both 

in terms of memory and computational resources and is 

inherently thread-safe. 

3. BASICS OF PLÜCKER TEST 

Plücker coordinates are an alternate way of describing directed 

lines in three space using six numbers [1]. By performing a six-

dimensional permuted inner product of these numbers we can 

determine whether two directed lines intersect (the inner product 

is 0.0) or whether one passes to one side or the other (depending 

on the sign of the inner product). These three possibilities are 

illustrated in figure 4 (after Teller in [12]): 

 

Figure 2: Three possibilities for two directed lines whether 

one passes to one side or the other (depending on the sign of 

the inner product).  

By determining on which side a line passes with respect to 

another we can determine if a ray passes through a triangle [14]. 

So if 6-dim vectors defining edges and a ray are: 

e0={p-p0, p×p0}, e1={p1-p, p1×p}, e2={p0-p1, p0×p1},  

R = {d×o, d}. 

Than ray hit test is whether following three dot products of 6-dim 

vectors have the same sign: 

t0 = (e0, R), t1 = (e1, R), t2 = (e2, R). 

Note that the inner-product uses only multiplications and 

additions, allowing for efficient implementation. Single-precision 

floating-point arithmetic is sufficient for both storing the Plücker 

coordinates and performing the inner product. The fast test is 

achieved by pre-computing and storing the Plücker coordinates of 

triangle edges (e0, e1, e2). The downside of such direct approach 

is that 18 floats are required to represent a single triangle, 

although it can be uniquely defined by 9 floating point values. In 

section 4 we will show that even faster than original test is 

possible by storing only 9 pre-computed floats and some 

additional index information. 

4. SIMD INTERSECTION ALGORITHM 

SIMD-fashion testing multiple rays instead of one ray for 

intersection with triangle can dramatically reduce the cost of 

rendering. SIMD architecture performs multiple floating point 

operations in parallel. This is common technique for speeding up 

ray-tracing [3, 5, 13]. For traversing the usage of packets wider 

than current SIMD is used to reduce the average bandwidth 

required per ray since rays in packet usually access the same 
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nodes and leaves. In [6] traversing of different ray packets size 

(from 1 to 4096) is compared. For high image-resolution packets 

of 8 × 8 or even 16×16 rays might be beneficial.   

We traverse 4x4 ray SIMD-organized packets simultaneously. 

Intersection routine is implemented using SIMD instructions. 

This routine is called 4 times for 4 rays. Our experiments with 

intersection of larger packets have shown that using more than 

using 4 rays simultaneously for intersection will not pay off as 

expected since current CPUs architecture has only 8 SIMD 

registers. This number of registers is just enough for intersection 

code which is assumed to work with 4 rays (see Appendix A) to 

avoid costly register spills/fills. 

In the following sections techniques for acceleration of ray-

triangle intersection testing are presented. First, section 4.1 

describes how the amount of computation required in the 

rendering process is reduced by preprocessing the scene into a 

data structure that can be more efficiently used. Second, in 

section 4.2 the Plücker test using preprocessing data form 

section 4.1 is described in details. Then, section 4.2.3 shows how 

one branch or no branches for the whole intersection test can be 

used.  

4.1 Pre-computed triangle information 

During the preprocessing stage, full information about a triangle 

is compressed to only 9 floating point and 3 integer values,,  bbaasseedd  

oonn  ssccaalleedd  nnoorrmmaall,,  rree--iinnddeexxiinngg  ccoooorrddiinnaatteess  ffoorr  triangle vertex p 

and two edges (e0 and e1, see Figure 1)..  TThhee  ppaaddddiinngg  ttoo  aa  4488--

bbyyttee  ssiizzee  aalllloowwss  ffoorr  aa  bbeetttteerr  ccaacchhee  aacccceessss  ppaatttteerrnn..  

  

TThhee  pprreepprroocceessssiinngg  ssttaaggee  iittsseellff  iiss  ddoonnee  uussiinngg  SSIIMMDD  iinnssttrruuccttiioonnss..  

4.1.1 Storing Normal  

The triangle normal is determined as n = (n0, n1, n2). One of the 

normal components is assumed to be equal to 1.0 and need not to 

be stored since the intersection algorithm presented does not 

require any specific normal length. Similarly to projection test, 

the largest magnitude normal component may be selected and all 

appropriate values may be scaled by an inverse of this 

component. In particular, the index w may be defined by the 

maximum of the absolute value of the triangle normal’s 

components:  

nw= max(abs(ni)) , where i = 0, 1, 2 

The two remaining components u, v are then determined: 

nu = nu/nw; 

nv = nv/nw; 

where u<v and u+v+w = 3;   

The largest magnitude is not a necessary condition for selection 

of the dropped normal component.  Rather, any non-zero 

component may be used but small magnitude may affect 

precision.   

4.1.2 Storing vertex data 

The two components of triangle vertex p, see Figure 1, with 

indices u, v (found at previous section) are simply stored at pu 

and pv fields of the TriAccel data structure:   

 pu = pu; 

pv = pv; 

The dot product of vertex p and modified (scaled) triangle 

normal is stored at np field: 

np = (nu*pu+nv*pv+pw); 

It is possible to just store the pw component of p instead of dot 

product, but dot product storage allows additional operations to 

be saved and allows better register usage on the test/intersection 

stage (see section 4.2). 

4.1.3 Storing edges data 

Only two components (having indices u and v, found as 

described in section 4.1.1) of each of the edges (e0, e1, 

see Figure 1) need to be stored, resulting in storing only 4 (e0u, 

e0v, e1u, e1v), rather than 6, floating point values.  In particular, 

although the edge is a 3D vector, the component having index w 

(as noted above) need not to be stored. Properly scaled 

components of e0 (namely e0u and e0v), as well as of e1 (namely 

e1u and e1v) are calculated as follows:  

e0u = (-1)we0u/nw  

e0v = (-1)
w
e0v/nw  

e1u = (-1)
w
e1u/nw  

e1v = (-1)we1v/nw 

The index w itself is stored and used to restore the coordinate 

components indexing during the intersection test/calculation 

stage.  Only 2 bits are required to store w (since for 3D vectors it 

takes values 0, 1, 2). Two other indices u and v may be restored 

by taking one of the rules (u<v) or (v<u) as a convention used 

throughout preprocessing and intersection test stages (see 

section 4.2.1). The field in TriAccel structure where the 2-bit w 

value is stored is referred to as ci. 

4.1.4 Axis-Aligned Triangle Flag 

Additional information about triangle orientation is also stored. 

The axis aligned triangles that have two zero components of 

normal are detected by a preprocessing algorithm. So nu and nv 

fields equal to zeros. The intersection test (section 4.2) with this 

particular triangle type is computationally simpler, requires less 

registers to perform. One bit is allocated in the ci field as an 

indicator of this particular triangle type. 

Major portion of in-door scenes or out-door scenes containing 

buildings have such triangles which define the surfaces of walls, 

ceilings, windows, etc. For in-door scenes, actual measurements 

indicate that more than 50% of rays hit such type of triangles.  

4.2 Intersection Algorithm 

Generally speaking the ray-triangle intersection problem leads to 

solving of simple linear system (see Figure 1 for description of 

vectors): 

struct TriAccel { 
 float nu; //used to store normal data 
 float nv; //used to store normal data 
 float np; //used to store vertex data 
 float pu; //used to store vertex data 
 float pv; //used to store vertex data 
 int ci;   //used to store edges data 
 float e0u; //used to store edges data 
 float e0v; //used to store edges data 
 float e1u; //used to store edges data 
 float e1v; //used to store edges data 
 int pad0; //padding 
 int pad1; //padding 
} 
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p + ue0 + ve1 = o+dt 

if ray hits triangle than 

u+v <= 1 

u,v,t >=0 

Our intersection algorithm works with a triangle on the basis of 

two methods: 

• Fast hit test based on Plücker coordinates.  Using three 

edges of a triangle, a ray calculation is determined 

against each edge and whether the ray is clockwise or 

counterclockwise with respect to the edge is 

determined.  The ray intersects the triangle only when 

the ray is inside the triangle; 

• Intersection point calculation. If ray passed the hit test 

(thus it is inside the triangle) then intersection point 

barycentric coordinates namely u,v and scalar distance t 

(see Figure 1) are calculated. This done by solving 

linear system written above. 

4.2.1 Fast Hit Test based on Plücker coordinates 

In this section math for fast hit test is presented. Although it is 

written in pseudo-code it is obviously maps to SIMD 

implementation for 4-rays packet (see Appendix A). 

For description of the o,t and d see the Introduction section. The 

meaning of TriAccel fields (like e0u, pu, nu) and how u, v and w 

indices are stored in ci, see section 4.1. 

The   “det”, “dett”, “detu” and “detv” are temporary variables 

introduced for efficient computation re-use. The naming of these 

temporary variables was selected to illustrate mathematical sense 

of computed values (for example, “det” is a value proportional to 

determinant of the linear system of ray-triangle intersection 

equation described above). “Du” and “Dv” are just temporary 

values introduced for efficient computation re-use.   

det =du*nu+dv*nv+dw; 

dett=np -(ou*nu+ov*nv+ow) ; 

Du = du *dett - (pu-ou)*det 

Dv = dv*dett -  (pv-ov)*det 

detu = (e1vDu – e1u*Dv) 

detv = (e0uDv – e0v*Du) 

Having theses values in the hand we can then compute the mask 

indicating whether values det - detu – detv, detu and detv all have 

the same sign. 

tmpdet0 = det - detu – detv 

tmpdet0 = tmpdet0 XOR detu 

tmpdet1 = detv XOR detu 

tmpdet0 = NOT(tmpdet0 OR tmpdet1) 

The elements of tmpdet0 will have sign bits set to 1 in the 

positions where the testing values have the same sign and 

corresponding rays in packet hit the triangle. It could be shown 

that detu, detv and tmpdet0 are equal to above mentioned inner 

products of Plücker coordinates. 

4.2.2 Improved Hit Test for Axis Aligned triangles 

Axis aligned triangles have only one non-zero normal’s 

coordinate. In our case this will be nu and nv fields (see 

section 4.1) equal to zero. Thus, calculations from previous 

section could be simplified to: 

det =dw 

dett=np- ow  

Du = du dett - (pu- ou)det 

Dv = dv dett - (pv- ov)det 

detu = (e1vDu – e1uDv) 

detv = (e0uDv – e0vDu) 

4.2.3 Intersection point calculation 

After it is determined that the ray intersects the triangle, the 

exact position of intersection is computed.   

Mathematically the following computations have simple meaning 

of solving linear system of ray-triangle intersection equations 

using Kramer’s rule. These calculations also obviously map to 

SIMD implementation for 4 rays packet. 

rdet = 1/det; 

t  = dett * rdet; 

ubar = detu * rdet; 

vbar = detv * rdet; 

Found ubar, vbar parameters are barycentric coordinates (see 

section 1), and t   - distance of intersection (see Figure 1). 

4.2.4 Branchless implementation 

The intersection test could be more efficient if it contains no 

branches because a mis-predicted branch causes a pipeline stall 

up to the length of the processor’s execution pipeline. Streaming 

architectures like GPU would more benefit form such 

optimization.  

One branch or no branches for the whole intersection 

test/calculation can be used.  In particular, a branchless 

implementation can be used if the mask is generated on the 

results of computation. Version with branch could be 

implemented, for example, as “if(…){}”construction. Branchless 

implementation is possible by performing section 4.2.2 

computations in both cases (hit and no hit) plus using additional 

bit-wise logical operations with a bit mask. Particularly, this 

mask is used to define to either store the intersection parameters 

with given triangle or keep their values unchanged.   

5. INVERSE MAILBOXING 

Due to the fact that a reference to the same primitive can exist in 

multiple acceleration structure leaves, a ray packet could perform 

the primitive intersection test multiple times. A simple technique 

to avoid such unnecessary intersection tests is mailboxing [1, 6, 

7]. Mailboxing allows for checking if a given primitive has 

already been intersected by the current ray packet or not.  

The recent implementations of mailboxing like [6] assign a 

unique ID to each ray packet. After an intersection test, the 

primitive is marked as already tested by assigning the current ray 

packet ID to the primitive. So unnecessary tests can now be 

avoided by performing a simple check before every potential 

primitive intersection: If the current ray packet ID matches the ID 

assigned to the primitive candidate, an intersection test between 
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the ray packet and the primitive has already been performed and 

can therefore be omitted. 

In contrast, we store a history of triangles tested with currently 

traversed ray packet. The triangle index which is a 32-bit integer 

is used as triangle ID in the history array. Since the total number 

of triangles to be tested with any given ray packet is not known 

in advance it might seem that such history array should be either 

of variable size or large enough to accommodate the whole 

history of triangles. In fact, any, even short, history allows a 

speed up due to skipping some number of duplicate tests. In 

addition, when efficient acceleration structure is used the total 

number of triangles tested for a ray packet is not very high. 

Statistics collected over a large number of models shows that the 

history of fixed size of 8 last triangles is the optimal balance 

between the history size and overhead on history maintenance. 

The history is organized as a ring buffer ensuring that last 8 

triangles are stored. Since the size of the buffer is 8 it requires 

only 2 SIMD operations to check if specific ID is stored in the 

buffer. 

Due to its small and fixed size the history can be thread-local 

allowing traversing multiple packets simultaneously in multiple 

threads. The history can be implemented as an automatic 

variable located in the traversal+intersection function testing a 

ray packet intersection with the whole acceleration structure. 

Thus it is automatically placed on a thread’s stack making sure 

that each thread has its own history. 

Since our algorithm stores triangle IDs instead of ray IDs as in 

traditional mailboxing we call our approach inverse mailboxing. 

6. RESULTS 

We estimate a number of clocks spent in our intersection 

algorithm working with 16 ray packet. Note that out-of-order 

execution, caching effects, varying branch table history entries, 

and etc. make it difficult to determine the exact amount of cycles 

required for a given algorithm. Therefore, following cycle 

statistics in this paper should be seen as estimates rather than 

exact values. We compare our results with approaches recently 

published in [5], where analogous SIMD implementation of 

intersection test for 16 rays is used. 

axis-

aligned  

triangles 

non axis-aligned triangles  

our 

approach 

our 

approach 

Plücker 

test from 

[5] 

Projection 

test from 

[5] 

all 16 rays 

hit triangle:  
384 clocks 460 clocks 590 clocks 620 clocks 

all 16 rays 

miss 

triangle: 

184 clocks 240 clocks 310 clocks 420 clocks 

Table 1. Cycle statistics of intersection routine measured for 

main cases in compare to our approach. Note that Carstein in 

[5] doesn’t use optimizations for axis-aligned triangles.  All  

our data was collected using Intel® Pentium IV as in [5]. 

We also have tested our intersection routine for multi-threaded 

ray-tracing on a 2-way Intel® Core™2 Duo machine (so 4 

threads on 4 cores). We employ 4x4 SIMD ray packet tracing as 

described in this paper. All rendering performance further is 

reported for resolution of 1024x1024, using lighting (1 point 

light source) and shadows. 

Inverse mailboxing usage scene 

and  # triangles 

 No Yes Improvement 

Rate 

Stanford 

Bunny, 69k 

 

 

33.6 36.9  9.7% 

Stanford 

Dragon, 

863k 

 

11.3 12.4  9.7% 

Happy 

Buddha 

1087K 

 

17.9 22.1  23.4% 

Table 2. Rendering performance (in FPS) comparison for 

different models with inverse mailboxing on/off. Performance 

numbers are collected for resolution of 1024x1024, using 

lighting (1 point light source) and shadows. 

Thus inverse mailboxing improves caching behavior of ray-

tracing (see Table 2) removing any additional memory 

consumption. It is also well-suited for multi-threading case. 

It is also proved by tests that improvement for intersection test 

(described in section 4.2.2) proposed for axis-aligned triangles 

pais off well, see Table 3. It is especially beneficial for case 

when a lot of when axis-aligned triangles are in scene (like 

“Soda Hall”, see Table 3).  In opposite case when no axis-

aligned triangles are present (like “Bunny” scene, see Table 3 ) 

our algorithm doesn’t introduce any penalty. 

considering AA-triangles 

(inverse mailboxing is used) 

 

                      

scene 

and  # triangles 

 

No Yes Improvement 

Rate 

Stanford 

Bunny, 

69k 

 

 

36.9 36.9  0% 

Ward 

Conference, 

282K 

 

27.3 28.9  5,8% 
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Soda Hall 

2195K 

 

23.3 32.4  39% 

Table 3. Rendering performance (in FPS) comparison for 

different models with on/off feature considering axis-aligned 

triangles. All performance is collected for resolution of 

1024x1024, using lighting (1 point light source) and shadows. 

7. CONCLUSION 

We present a ray-triangle intersection algorithm that quickly 

determines if a ray intersects a triangle interior and finds 

parameters of intersection. We further optimized the Plücker test 

by accomplishing a SIMD implementation and reducing number 

of operations by clever using certain amount of pre-computing 

values. The branchless implementation by generating a mask is 

described. 

We show how certain values could be pre-computed to save 

computations and avoid data rearrangement. We also show how 

to further save computations for axis-orthogonal triangles by 

processing them separately. 

We also present SIMD-fashion, inherently thread-safe inverse 

mailboxing to avoid unnecessary intersection tests for ray packet 

in case when many leaves share the same triangle. 

The combination of processor-specific optimizations with 

algorithms that exploit the coherence of ray-tracing makes it 

possible to achieve real-time performance on a modern CPU. 
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APPENDIX A 

//Main part of ray/triangle hit test (see section 4.2.1) in SIMD.  

struct RTSSEVec3f{ 

__m128 t[3]; 

}; 

//directions of rays in packet  

RTSSEVec3f d; 

//origins of rays in packet  

RTSSEVec3f o; 

//params loaded from TriAccel and replicated to __m128: 

const __m128& nu,np, nv,pu,pv, e0u,e0v,e1u,e1v;  

//indices computed from from ‘ci’ field of TriAccel: 

const int& u,v,w; 

//temporary variables 

__m128 det,dett,detu, detv, nrv, nru, du,dv,ou, ov, tmpdet0, 

tmpdet1; 

 

/* ----ray-packet/triangle hit test ---- */ 

//dett = np -(ou*nu+ov*nv+ow) 

dett = np; 

dett = _mm_sub_ps(dett, 

*((const __m128*)(&reinterpret_cast<const float*>(o.t)[w]))); 

du = nu; 

dv = nv; 

ou = pu;  

ou = _mm_sub_ps(ou, 

*((const __m128*)(&reinterpret_cast<const float*>(o.t)[u]))); 

ov = pv; 

ov = _mm_sub_ps(ov,  

*((const __m128*)(&reinterpret_cast<const float*>(o.t)[v]))); 

du = _mm_mul_ps(du, ou); 

dv = _mm_mul_ps(dv, ov); 

dett = _mm_add_ps(dett, du); 

dett = _mm_add_ps(dett, dv); 

//det =du*nu+dv*nv+dw 

du =_mm_load_ps(&reinterpret_cast<const float*>(d.t)[u]); 

dv =_mm_load_ps(&reinterpret_cast<const float*>(d.t)[v]); 

det = nu; 

det = _mm_mul_ps(det, du); 

nrv = nv; 

nrv = _mm_mul_ps(nrv, dv); 
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det = _mm_add_ps(det, 

_mm_load_ps(&reinterpret_cast<const float*>(d.t)[w])); 

det = _mm_add_ps(det, nrv); 

//Du = du*dett - (pu-ou)*det 

nru = _mm_mul_ps(ou, det);  

du  = _mm_sub_ps(du, nru); 

//Dv = dv*dett -  (pv-ov)*det 

nrv = _mm_mul_ps(ov, det); 

dv  = _mm_sub_ps(dv, nrv); 

//detu = (e1vDu – e1u*Dv) 

nru = e1v; 

nrv = e1u; 

nru = _mm_mul_ps(nru, du); 

nrv = _mm_mul_ps(nrv, dv); 

detu = _mm_sub_ps(nru, nrv); 

//detv = (e0uDv – e0v*Du) 

nrv = e0u; 

nrv = _mm_mul_ps(nrv, dv); 

dv = e0v; 

dv = _mm_mul_ps(dv, du); 

detv = _mm_sub_ps(nrv, dv); 

/* Having det, detu and detv values in hands we can then 

compute the mask indicating whether each of 4 values ‘det - detu 

– detv’, ‘detu’ and ‘detv’ all have the same sign indicating that 

corresponding rays in packet hit the triangle (see section 4.2.1)*/ 
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