
Ray-Triangle Intersection Algorithm for Modern CPU Architectures

Maxim Shevtsov, Alexei Soupikov and Alexander Kapustin

Intel Corporation

Nizhniy Novgorod, Russia

{maxim.y.shevtsov, alexey.soupikov, alexander.kapustin}@intel.com

Abstract

We present an algorithm for determining if a ray intersects a

triangle interior; and computing intersection point parameters as

well as distance of intersection in response to the ray intersecting

a triangle interior. Particularly a variation of a hybrid test having

all benefits of Plücker and projected barycentric tests is

proposed. The test is also vectorized using SIMD instructions for

efficient handling ray packets. It is essential for achieving high

ray tracing performance on modern CPUs.

Our implementation also detects axis-orthogonal triangles and

processing them separately.

For maximum performance we also introduce a method for

triangle representation, using only necessary pre-computed

values.

We also present inherently thread-safe and memory efficient

alternative of mailboxing to avoid unnecessary intersection tests

for ray packet in case when many leaves share the same triangle.

Keywords: ray-triangle intersection, SIMD, Plücker test.

1. INTRODUCTION

A ray tracing is a well known method used in modeling of a

variety of physical phenomena related to light propagation in

various media [1, 2]. Although ray tracing is computationally

demanding, operations and data access costs can be efficiently

amortized over rays bundled in a packet [3, 4]. This allows for

reducing the required memory bandwidth, which is known to be

one of the major bottlenecks of current CPU architectures.

The ray-tracing algorithm basically consists of the following

operations:

• traversing of the scene in a front-to-back manner until a

leaf is reached;

• test all entries in the leaf’s primitive reference list

(typically, indices referring to a list of scene primitives)

and retain the nearest intersection;

Researchers proposed algorithms for tracing coherent ray packets

instead of single rays [3, 5] using SIMD instructions. Thus a fast

ray-triangle intersection test which can be also efficiently

implemented using SSE instructions is also the key factor for

increasing performance especially since ray-triangle intersection

test is the one of the most frequently performed.

In this paper a ray r(t) with origin o and normalized direction d is

defined as r(t) = o+ t*d, while a triangle is defined as (p, e0, e1)

– by vertex and 2 edges.

The intersection (hit) point can be described by u, v barycentric

coordinates to allow representation of the point as a linear

combination of triangle vertex and edges:

ph = p + e0*u + e1*v;

In the ray-triangle intersection problem we want to determine if

the ray intersects the triangle and to compute hit point

parameters, namely u, v as well as value of t - distance of

intersection (see Figure 1). In addition we must avoid numerical

errors which can result in visible artifacts. Barycentric

coordinates u, v are typically used in ray-tracing for further

processing (for example, computation of texture coordinates,

normal interpolation and so on).

Figure 1: Ray-Triangle Intersection Algorithm finds whether

intersection point ph exists. If yes, computes the u,v

parameters of intersection (such as ph = p + e0*u + e1*v) as

well as distance t={o, ph}.

A triangle may overlap many leaves and it leads to the same

primitive being tested multiple times during traversal of a ray

packet. These multiple intersections can be avoided by

mailboxing technique [1, 6, 7]. We introduce very compact, fast

and thread-safe alternative of mailboxing that doesn’t require any

additional per-primitive data or large look-up tables.

2. PREVIOUS WORK

Initially algorithms solved ray-triangle intersection problem

simply by computing the intersection with three boundary planes

defining the extent of the triangle and then testing if the

intersection point is inside the edges. This approach requires

significant memory for the storing planes.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

Another approach is to use some parametric representation like

[6, 8]. The basic idea behind this test is to project the triangle

onto one of the three axis-aligned planes (along so called

dominant axis selected according triangle plane orientation) and

to perform the computation of the barycentric coordinates in 2D

instead of 3D. As the distance computation involves a costly

division and the subsequent instructions depend on the result, the

Wald’s implementation [6] uses Newton-Raphson iteration for

computing the inverse resulting in observable but moderate

speed up.

Ray-triangle intersection test should be considered in the context

of ray tracing where ray usually traverses some acceleration

structure and is tested against some number of triangles met

during traversal step. The algorithm searches for the closest

intersection. So ray-triangle intersection test consists of two

logical steps:

a) computing distance from ray origin to the point where the ray

intersects the triangle plane and testing if it is the closest

intersection and distance is greater or equal to zero (distance

test),

b) testing if that ray-plane intersection point lies inside the

triangle (aperture test).

Usual strategy in the most of algorithms published is performing

distance test first and do so called early exit if distance test is not

passed thus skipping an aperture test. The fact that it is not

necessarily the best performing strategy stayed unnoticed for a

long time. The statistics presented in [5] shows that at least in

case of spatial sub-division acceleration structures the distance

test passes far more often than aperture test. So performing early

exit using results of an aperture test should be more beneficial

than performing distance test first. The only problem is

developing fast aperture test that doesn’t involve distance

computations or costly divisions; and Plücker coordinates test

exactly solves the problem.

The Plücker test takes advantage of the properties of Plücker

coordinates [11, 14], which will be briefly described in the next

section. Instead of using barycentric coordinates for the aperture

test, the Plücker test relies on testing the relations between a ray

and the triangle edges.

We further optimized Plücker test by accomplishing more

compact precomputed data representation, reducing overall

arithmetic operations count. As additional benefit a branchless

implementation of the test is possible by generating a mask for

result of computation thus enabling fast ray-triangle intersection

on architectures with in-efficient branches (e.g. GPUs).

For further speed up of triangle intersection we use SSE

instructions, in the context of ray packets. In order to avoid

additional instructions for data rearrangement (which can be

costly using SSE), our algorithm relies on a small amount of

precomputed data (see section 4.1) for every triangle.

Mailboxing is a technique to avoid multiple intersection tests

with triangles that overlap many different leaves [1, 6, 7]. In

standard mailboxing, each ray gets a unique ID assigned to it,

and each primitive store the ID of the last ray it was tested with.

During traversal the duplicate intersection tests can be avoided

by simply comparing the current ray ID with the ID of the last

tested ray. Such mailboxing requires a significant amount of

memory (one integer or pointer per primitive to store ray ID), and

can easily lead to costly, incoherent memory accesses and cache

thrashing [5]. Furthermore, both memory consumption and cache

thrashing get worse when using multiple threads, as the mailbox

cannot be shared between threads. Wald in [6] introduces hashed

mailboxing which has been shown to be even less efficient than

“standard” mailboxing in the general case, though is thread-safe.

Our SIMD-fashion mailboxing alternative is more efficient both

in terms of memory and computational resources and is

inherently thread-safe.

3. BASICS OF PLÜCKER TEST

Plücker coordinates are an alternate way of describing directed

lines in three space using six numbers [1]. By performing a six-

dimensional permuted inner product of these numbers we can

determine whether two directed lines intersect (the inner product

is 0.0) or whether one passes to one side or the other (depending

on the sign of the inner product). These three possibilities are

illustrated in figure 4 (after Teller in [12]):

Figure 2: Three possibilities for two directed lines whether

one passes to one side or the other (depending on the sign of

the inner product).

By determining on which side a line passes with respect to

another we can determine if a ray passes through a triangle [14].

So if 6-dim vectors defining edges and a ray are:

e0={p-p0, p×p0}, e1={p1-p, p1×p}, e2={p0-p1, p0×p1},

R = {d×o, d}.

Than ray hit test is whether following three dot products of 6-dim

vectors have the same sign:

t0 = (e0, R), t1 = (e1, R), t2 = (e2, R).

Note that the inner-product uses only multiplications and

additions, allowing for efficient implementation. Single-precision

floating-point arithmetic is sufficient for both storing the Plücker

coordinates and performing the inner product. The fast test is

achieved by pre-computing and storing the Plücker coordinates of

triangle edges (e0, e1, e2). The downside of such direct approach

is that 18 floats are required to represent a single triangle,

although it can be uniquely defined by 9 floating point values. In

section 4 we will show that even faster than original test is

possible by storing only 9 pre-computed floats and some

additional index information.

4. SIMD INTERSECTION ALGORITHM

SIMD-fashion testing multiple rays instead of one ray for

intersection with triangle can dramatically reduce the cost of

rendering. SIMD architecture performs multiple floating point

operations in parallel. This is common technique for speeding up

ray-tracing [3, 5, 13]. For traversing the usage of packets wider

than current SIMD is used to reduce the average bandwidth

required per ray since rays in packet usually access the same

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

nodes and leaves. In [6] traversing of different ray packets size

(from 1 to 4096) is compared. For high image-resolution packets

of 8 × 8 or even 16×16 rays might be beneficial.

We traverse 4x4 ray SIMD-organized packets simultaneously.

Intersection routine is implemented using SIMD instructions.

This routine is called 4 times for 4 rays. Our experiments with

intersection of larger packets have shown that using more than

using 4 rays simultaneously for intersection will not pay off as

expected since current CPUs architecture has only 8 SIMD

registers. This number of registers is just enough for intersection

code which is assumed to work with 4 rays (see Appendix A) to

avoid costly register spills/fills.

In the following sections techniques for acceleration of ray-

triangle intersection testing are presented. First, section 4.1

describes how the amount of computation required in the

rendering process is reduced by preprocessing the scene into a

data structure that can be more efficiently used. Second, in

section 4.2 the Plücker test using preprocessing data form

section 4.1 is described in details. Then, section 4.2.3 shows how

one branch or no branches for the whole intersection test can be

used.

4.1 Pre-computed triangle information

During the preprocessing stage, full information about a triangle

is compressed to only 9 floating point and 3 integer values,, bbaasseedd

oonn ssccaalleedd nnoorrmmaall,, rree--iinnddeexxiinngg ccoooorrddiinnaatteess ffoorr triangle vertex p

and two edges (e0 and e1, see Figure 1).. TThhee ppaaddddiinngg ttoo aa 4488--

bbyyttee ssiizzee aalllloowwss ffoorr aa bbeetttteerr ccaacchhee aacccceessss ppaatttteerrnn..

TThhee pprreepprroocceessssiinngg ssttaaggee iittsseellff iiss ddoonnee uussiinngg SSIIMMDD iinnssttrruuccttiioonnss..

4.1.1 Storing Normal

The triangle normal is determined as n = (n0, n1, n2). One of the

normal components is assumed to be equal to 1.0 and need not to

be stored since the intersection algorithm presented does not

require any specific normal length. Similarly to projection test,

the largest magnitude normal component may be selected and all

appropriate values may be scaled by an inverse of this

component. In particular, the index w may be defined by the

maximum of the absolute value of the triangle normal’s

components:

nw= max(abs(ni)) , where i = 0, 1, 2

The two remaining components u, v are then determined:

nu = nu/nw;

nv = nv/nw;

where u<v and u+v+w = 3;

The largest magnitude is not a necessary condition for selection

of the dropped normal component. Rather, any non-zero

component may be used but small magnitude may affect

precision.

4.1.2 Storing vertex data

The two components of triangle vertex p, see Figure 1, with

indices u, v (found at previous section) are simply stored at pu

and pv fields of the TriAccel data structure:

 pu = pu;

pv = pv;

The dot product of vertex p and modified (scaled) triangle

normal is stored at np field:

np = (nu*pu+nv*pv+pw);

It is possible to just store the pw component of p instead of dot

product, but dot product storage allows additional operations to

be saved and allows better register usage on the test/intersection

stage (see section 4.2).

4.1.3 Storing edges data

Only two components (having indices u and v, found as

described in section 4.1.1) of each of the edges (e0, e1,

see Figure 1) need to be stored, resulting in storing only 4 (e0u,

e0v, e1u, e1v), rather than 6, floating point values. In particular,

although the edge is a 3D vector, the component having index w

(as noted above) need not to be stored. Properly scaled

components of e0 (namely e0u and e0v), as well as of e1 (namely

e1u and e1v) are calculated as follows:

e0u = (-1)we0u/nw

e0v = (-1)
w
e0v/nw

e1u = (-1)
w
e1u/nw

e1v = (-1)we1v/nw

The index w itself is stored and used to restore the coordinate

components indexing during the intersection test/calculation

stage. Only 2 bits are required to store w (since for 3D vectors it

takes values 0, 1, 2). Two other indices u and v may be restored

by taking one of the rules (u<v) or (v<u) as a convention used

throughout preprocessing and intersection test stages (see

section 4.2.1). The field in TriAccel structure where the 2-bit w

value is stored is referred to as ci.

4.1.4 Axis-Aligned Triangle Flag

Additional information about triangle orientation is also stored.

The axis aligned triangles that have two zero components of

normal are detected by a preprocessing algorithm. So nu and nv

fields equal to zeros. The intersection test (section 4.2) with this

particular triangle type is computationally simpler, requires less

registers to perform. One bit is allocated in the ci field as an

indicator of this particular triangle type.

Major portion of in-door scenes or out-door scenes containing

buildings have such triangles which define the surfaces of walls,

ceilings, windows, etc. For in-door scenes, actual measurements

indicate that more than 50% of rays hit such type of triangles.

4.2 Intersection Algorithm

Generally speaking the ray-triangle intersection problem leads to

solving of simple linear system (see Figure 1 for description of

vectors):

struct TriAccel {
 float nu; //used to store normal data
 float nv; //used to store normal data
 float np; //used to store vertex data
 float pu; //used to store vertex data
 float pv; //used to store vertex data
 int ci; //used to store edges data
 float e0u; //used to store edges data
 float e0v; //used to store edges data
 float e1u; //used to store edges data
 float e1v; //used to store edges data
 int pad0; //padding
 int pad1; //padding
}

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

p + ue0 + ve1 = o+dt

if ray hits triangle than

u+v <= 1

u,v,t >=0

Our intersection algorithm works with a triangle on the basis of

two methods:

• Fast hit test based on Plücker coordinates. Using three

edges of a triangle, a ray calculation is determined

against each edge and whether the ray is clockwise or

counterclockwise with respect to the edge is

determined. The ray intersects the triangle only when

the ray is inside the triangle;

• Intersection point calculation. If ray passed the hit test

(thus it is inside the triangle) then intersection point

barycentric coordinates namely u,v and scalar distance t

(see Figure 1) are calculated. This done by solving

linear system written above.

4.2.1 Fast Hit Test based on Plücker coordinates

In this section math for fast hit test is presented. Although it is

written in pseudo-code it is obviously maps to SIMD

implementation for 4-rays packet (see Appendix A).

For description of the o,t and d see the Introduction section. The

meaning of TriAccel fields (like e0u, pu, nu) and how u, v and w

indices are stored in ci, see section 4.1.

The “det”, “dett”, “detu” and “detv” are temporary variables

introduced for efficient computation re-use. The naming of these

temporary variables was selected to illustrate mathematical sense

of computed values (for example, “det” is a value proportional to

determinant of the linear system of ray-triangle intersection

equation described above). “Du” and “Dv” are just temporary

values introduced for efficient computation re-use.

det =du*nu+dv*nv+dw;

dett=np -(ou*nu+ov*nv+ow) ;

Du = du *dett - (pu-ou)*det

Dv = dv*dett - (pv-ov)*det

detu = (e1vDu – e1u*Dv)

detv = (e0uDv – e0v*Du)

Having theses values in the hand we can then compute the mask

indicating whether values det - detu – detv, detu and detv all have

the same sign.

tmpdet0 = det - detu – detv

tmpdet0 = tmpdet0 XOR detu

tmpdet1 = detv XOR detu

tmpdet0 = NOT(tmpdet0 OR tmpdet1)

The elements of tmpdet0 will have sign bits set to 1 in the

positions where the testing values have the same sign and

corresponding rays in packet hit the triangle. It could be shown

that detu, detv and tmpdet0 are equal to above mentioned inner

products of Plücker coordinates.

4.2.2 Improved Hit Test for Axis Aligned triangles

Axis aligned triangles have only one non-zero normal’s

coordinate. In our case this will be nu and nv fields (see

section 4.1) equal to zero. Thus, calculations from previous

section could be simplified to:

det =dw

dett=np- ow

Du = du dett - (pu- ou)det

Dv = dv dett - (pv- ov)det

detu = (e1vDu – e1uDv)

detv = (e0uDv – e0vDu)

4.2.3 Intersection point calculation

After it is determined that the ray intersects the triangle, the

exact position of intersection is computed.

Mathematically the following computations have simple meaning

of solving linear system of ray-triangle intersection equations

using Kramer’s rule. These calculations also obviously map to

SIMD implementation for 4 rays packet.

rdet = 1/det;

t = dett * rdet;

ubar = detu * rdet;

vbar = detv * rdet;

Found ubar, vbar parameters are barycentric coordinates (see

section 1), and t - distance of intersection (see Figure 1).

4.2.4 Branchless implementation

The intersection test could be more efficient if it contains no

branches because a mis-predicted branch causes a pipeline stall

up to the length of the processor’s execution pipeline. Streaming

architectures like GPU would more benefit form such

optimization.

One branch or no branches for the whole intersection

test/calculation can be used. In particular, a branchless

implementation can be used if the mask is generated on the

results of computation. Version with branch could be

implemented, for example, as “if(…){}”construction. Branchless

implementation is possible by performing section 4.2.2

computations in both cases (hit and no hit) plus using additional

bit-wise logical operations with a bit mask. Particularly, this

mask is used to define to either store the intersection parameters

with given triangle or keep their values unchanged.

5. INVERSE MAILBOXING

Due to the fact that a reference to the same primitive can exist in

multiple acceleration structure leaves, a ray packet could perform

the primitive intersection test multiple times. A simple technique

to avoid such unnecessary intersection tests is mailboxing [1, 6,

7]. Mailboxing allows for checking if a given primitive has

already been intersected by the current ray packet or not.

The recent implementations of mailboxing like [6] assign a

unique ID to each ray packet. After an intersection test, the

primitive is marked as already tested by assigning the current ray

packet ID to the primitive. So unnecessary tests can now be

avoided by performing a simple check before every potential

primitive intersection: If the current ray packet ID matches the ID

assigned to the primitive candidate, an intersection test between

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

the ray packet and the primitive has already been performed and

can therefore be omitted.

In contrast, we store a history of triangles tested with currently

traversed ray packet. The triangle index which is a 32-bit integer

is used as triangle ID in the history array. Since the total number

of triangles to be tested with any given ray packet is not known

in advance it might seem that such history array should be either

of variable size or large enough to accommodate the whole

history of triangles. In fact, any, even short, history allows a

speed up due to skipping some number of duplicate tests. In

addition, when efficient acceleration structure is used the total

number of triangles tested for a ray packet is not very high.

Statistics collected over a large number of models shows that the

history of fixed size of 8 last triangles is the optimal balance

between the history size and overhead on history maintenance.

The history is organized as a ring buffer ensuring that last 8

triangles are stored. Since the size of the buffer is 8 it requires

only 2 SIMD operations to check if specific ID is stored in the

buffer.

Due to its small and fixed size the history can be thread-local

allowing traversing multiple packets simultaneously in multiple

threads. The history can be implemented as an automatic

variable located in the traversal+intersection function testing a

ray packet intersection with the whole acceleration structure.

Thus it is automatically placed on a thread’s stack making sure

that each thread has its own history.

Since our algorithm stores triangle IDs instead of ray IDs as in

traditional mailboxing we call our approach inverse mailboxing.

6. RESULTS

We estimate a number of clocks spent in our intersection

algorithm working with 16 ray packet. Note that out-of-order

execution, caching effects, varying branch table history entries,

and etc. make it difficult to determine the exact amount of cycles

required for a given algorithm. Therefore, following cycle

statistics in this paper should be seen as estimates rather than

exact values. We compare our results with approaches recently

published in [5], where analogous SIMD implementation of

intersection test for 16 rays is used.

axis-

aligned

triangles

non axis-aligned triangles

our

approach

our

approach

Plücker

test from

[5]

Projection

test from

[5]

all 16 rays

hit triangle:
384 clocks 460 clocks 590 clocks 620 clocks

all 16 rays

miss

triangle:

184 clocks 240 clocks 310 clocks 420 clocks

Table 1. Cycle statistics of intersection routine measured for

main cases in compare to our approach. Note that Carstein in

[5] doesn’t use optimizations for axis-aligned triangles. All

our data was collected using Intel® Pentium IV as in [5].

We also have tested our intersection routine for multi-threaded

ray-tracing on a 2-way Intel® Core™2 Duo machine (so 4

threads on 4 cores). We employ 4x4 SIMD ray packet tracing as

described in this paper. All rendering performance further is

reported for resolution of 1024x1024, using lighting (1 point

light source) and shadows.

Inverse mailboxing usage scene

and # triangles

 No Yes Improvement

Rate

Stanford

Bunny, 69k

33.6 36.9 9.7%

Stanford

Dragon,

863k

11.3 12.4 9.7%

Happy

Buddha

1087K

17.9 22.1 23.4%

Table 2. Rendering performance (in FPS) comparison for

different models with inverse mailboxing on/off. Performance

numbers are collected for resolution of 1024x1024, using

lighting (1 point light source) and shadows.

Thus inverse mailboxing improves caching behavior of ray-

tracing (see Table 2) removing any additional memory

consumption. It is also well-suited for multi-threading case.

It is also proved by tests that improvement for intersection test

(described in section 4.2.2) proposed for axis-aligned triangles

pais off well, see Table 3. It is especially beneficial for case

when a lot of when axis-aligned triangles are in scene (like

“Soda Hall”, see Table 3). In opposite case when no axis-

aligned triangles are present (like “Bunny” scene, see Table 3)

our algorithm doesn’t introduce any penalty.

considering AA-triangles

(inverse mailboxing is used)

scene

and # triangles

No Yes Improvement

Rate

Stanford

Bunny,

69k

36.9 36.9 0%

Ward

Conference,

282K

27.3 28.9 5,8%

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

Soda Hall

2195K

23.3 32.4 39%

Table 3. Rendering performance (in FPS) comparison for

different models with on/off feature considering axis-aligned

triangles. All performance is collected for resolution of

1024x1024, using lighting (1 point light source) and shadows.

7. CONCLUSION

We present a ray-triangle intersection algorithm that quickly

determines if a ray intersects a triangle interior and finds

parameters of intersection. We further optimized the Plücker test

by accomplishing a SIMD implementation and reducing number

of operations by clever using certain amount of pre-computing

values. The branchless implementation by generating a mask is

described.

We show how certain values could be pre-computed to save

computations and avoid data rearrangement. We also show how

to further save computations for axis-orthogonal triangles by

processing them separately.

We also present SIMD-fashion, inherently thread-safe inverse

mailboxing to avoid unnecessary intersection tests for ray packet

in case when many leaves share the same triangle.

The combination of processor-specific optimizations with

algorithms that exploit the coherence of ray-tracing makes it

possible to achieve real-time performance on a modern CPU.

8. REFERENCES

[1] Andrew Glassner. “An Introduction to Ray Tracing”,

Morgan Kaufmann, 1989.

[2] M. Pharr and G. Humphreys. “Physically Based Rendering:

From Theory to Implementation”. Morgan Kaufman, 2004.

[3] I. Wald, C. Benthin, M. Wagner, and P. Slusallek,

“Interactive Rendering with Coherent Ray Tracing”. Computer

Graphics Forum, v.20 n.3, pp. 53–164, 2001. (Proceedings of

Eurographics 2001).

[4] A. Reshetov, A. Soupikov. and J. Hurley, ”Multi-level ray

tracing algorithm”. Proceedings of ACM SIGGRAPH (2005),

pp.1176-1185.

[5] C. Benthin, “Realtime Ray Tracing on current CPU

Architectures”, PhD thesis, Saarland University, 2006.

[6] I. Wald, “Realtime ray tracing and interactive global

illumination”, PhD thesis, Saarland University, 2004.

[7] D. Kirk and J. Arvo, “Improved Ray Tagging For Voxel-

Based Ray Tracing”. In Graphics Gems II, pp. 264–266.

Academic Press, 1991.

[8] J. Arenberg, “Ray-Triangle Intersection with Barycentric

Coordinates”, in Ray Tracing News, edited by Eric Haines, v

l.1, n. 11, November 4, 1988.

http://www.acm.org/tog/resources/RTNews/

[9] D. Badouel, “An Efficient Ray-Polygon Intersection”- in

Graphics Gems- edited by Andrew S. Glassner- Academic Press

Inc., 1990, pp. 390-393.

[10] E. Haines, “Point in Polygon Strategies”, in Graphics Gems

IV edited by Paul S. Heckbert, AP Professional, 1994, pp.24-46.

[11] K. Shoemake. “Plücker Coordinate Tutorial”. In Ray

Tracing News, 1998.

http://www.acm.org/tog/resources/RTNews/html/rtnv11n1.html.

[12] S.J. Teller. “Computing the Antipenumbra of an Area Light

Source”, Computer Graphics’92, 26(2).

[13] K. Dmitriev, V. Havran, and H.-P. Seidel, “Faster Ray

Tracing with SIMD Shaft Culling”. Research Report MPI-I-

2004-4-006, Max-Planck-Institut für Informatik, Saarbrücken,

Germany.

[14] T. Möller, B. Trumbore, “Fast, minimum storage ray-

triangle intersection”, Journal of Graphics Tools, v.2 n.1, pp.21-

28, 1997.

APPENDIX A

//Main part of ray/triangle hit test (see section 4.2.1) in SIMD.

struct RTSSEVec3f{

__m128 t[3];

};

//directions of rays in packet

RTSSEVec3f d;

//origins of rays in packet

RTSSEVec3f o;

//params loaded from TriAccel and replicated to __m128:

const __m128& nu,np, nv,pu,pv, e0u,e0v,e1u,e1v;

//indices computed from from ‘ci’ field of TriAccel:

const int& u,v,w;

//temporary variables

__m128 det,dett,detu, detv, nrv, nru, du,dv,ou, ov, tmpdet0,

tmpdet1;

/* ----ray-packet/triangle hit test ---- */

//dett = np -(ou*nu+ov*nv+ow)

dett = np;

dett = _mm_sub_ps(dett,

((const __m128)(&reinterpret_cast<const float*>(o.t)[w])));

du = nu;

dv = nv;

ou = pu;

ou = _mm_sub_ps(ou,

((const __m128)(&reinterpret_cast<const float*>(o.t)[u])));

ov = pv;

ov = _mm_sub_ps(ov,

((const __m128)(&reinterpret_cast<const float*>(o.t)[v])));

du = _mm_mul_ps(du, ou);

dv = _mm_mul_ps(dv, ov);

dett = _mm_add_ps(dett, du);

dett = _mm_add_ps(dett, dv);

//det =du*nu+dv*nv+dw

du =_mm_load_ps(&reinterpret_cast<const float*>(d.t)[u]);

dv =_mm_load_ps(&reinterpret_cast<const float*>(d.t)[v]);

det = nu;

det = _mm_mul_ps(det, du);

nrv = nv;

nrv = _mm_mul_ps(nrv, dv);

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

det = _mm_add_ps(det,

_mm_load_ps(&reinterpret_cast<const float*>(d.t)[w]));

det = _mm_add_ps(det, nrv);

//Du = du*dett - (pu-ou)*det

nru = _mm_mul_ps(ou, det);

du = _mm_sub_ps(du, nru);

//Dv = dv*dett - (pv-ov)*det

nrv = _mm_mul_ps(ov, det);

dv = _mm_sub_ps(dv, nrv);

//detu = (e1vDu – e1u*Dv)

nru = e1v;

nrv = e1u;

nru = _mm_mul_ps(nru, du);

nrv = _mm_mul_ps(nrv, dv);

detu = _mm_sub_ps(nru, nrv);

//detv = (e0uDv – e0v*Du)

nrv = e0u;

nrv = _mm_mul_ps(nrv, dv);

dv = e0v;

dv = _mm_mul_ps(dv, du);

detv = _mm_sub_ps(nrv, dv);

/* Having det, detu and detv values in hands we can then

compute the mask indicating whether each of 4 values ‘det - detu

– detv’, ‘detu’ and ‘detv’ all have the same sign indicating that

corresponding rays in packet hit the triangle (see section 4.2.1)*/

About the authors

Maxim Shevtsov is a Research Scientist in Nizhniy Novgorod

Laboratory of Intel Corporation. He received MS degree in CS

from Novosibirsk State University in 2003. His contact email is

maxim.y.shevtsov@intel.com

Alexei Soupikov is a Staff Researcher leading advanced graphics

research team in Nizhniy Novgorod Laboratory of Intel

Corporation. He is MS in CS and EE. His contact email is

alexey.soupikov@intel.com

Alexander Kapustin is a Research Scientist in Nizhniy Novgorod

Laboratory of Intel Corporation. He received PhD in 1987. His

contact email is alexander.kapustin@intel.com

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

